Characterization of Crosslinked Gel Kinetics and Gel Strength by Use of NMR

Author:

Romero-Zerón L.1,Manalo F.2,Kantzas A.3

Affiliation:

1. University of New Brunswick

2. Bantrel

3. University of Calgary

Abstract

Summary Highly crosslinked gels are used in high-permeability reservoirs to achieve appropriate fluid-loss control during well completion and workover operations. Crosslinked gels are also used to shut off unwanted gas and/or water influx into production wells and to improve the conformance of the near-wellbore injection profile in naturally fractured or high-permeability reservoirs. In all these applications, the appropriate design of the gel treatment is critical to ensure an efficient gel placement. Important variables of gel systems are gel rheology and gel strength during and after the gelation reaction is completed. The rheology of gels and gelation rates is commonly determined by rheometry or, in a qualitative mode, through bottle testing with well-known gel-strength codes (i.e., Sydansk's code). Rheological measurements can be time-consuming, while bottle testing can lead to an inconsistent gel description as a result of the subjective nature of the gel-strength code. This paper evaluates the use of low-field nuclear magnetic resonance (NMR) as a nonin-trusive technique to monitor gelation rates and to characterize gel strength. Because of the nonintrusive nature of this technique, it could be considered to be a better alternative to conventional rhe-ological measurements and common qualitative methods, such as gel-strength codes. In addition, NMR could offer faster and more accurate gel-strength characterization and gelation monitoring compared to rheological methods. Furthermore, it can be used in porous media. NMR parameters are predicted and calibrated conducting concentration sweeps of polymer, crosslinker, and brine, as well as gelation-time sweeps. This then allows for a standardized method for gel characterization. The findings of this work include a preliminary assessment of the use of different techniques, such as low-field NMR, rheometry, and bottle testing, for monitoring the gelation reaction and gel strength of partially hydrolyzed polyacrylamide chromium [(HPAm)/Cr(III)] acetate gel. The experimental results also include the initial identification of the gel point for different formulations of the gel system using low-field NMR.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3