Burst Resistance of Pipe Cemented Into the Earth

Author:

Zinkham R.E.1,Goodwin R.J.1

Affiliation:

1. Gulf Research And Development Co.

Abstract

Abstract A mathematical study has been made of the amount of support a cement sheath could provide to casing cemented into the earth. Several assumptions were required to make the analysis, but only two of them are limiting:the pipe must be completely surrounded with cement, andany mud filter cake between the cement and formation has the same physical properties as either the cement or formation. The calculations showed that little support would be provided to the pipe before an unsupported cement sheath failed in tension; however, when the cement is confined between the pipe and wellbore and is loaded in compression, the pipe could receive a considerable amount of support. In fact, the theoretical results indicate the lower grades and larger sizes of pipe could have their working pressures doubled when reasonable compressive loads were applied to a surrounding cement sheath. These data are shown in six charts. Other down-hole conditions such as setting the cement under pressure, increased temperature and cement confinement all tend to increase the potential usefulness of the sheath. Because of size limitations, a laboratory program to verify the most important results of this mathematical study would be very difficult. However, small-scale field tests would be practicable. This paper shows that, if a solid cement sheath can be obtained in the field by either primary cementing or by repair after detection of flaws by surveys such as the new cement-bond logs, the use of this approach to reducing pipe costs merits further consideration. Introduction A modification in casing design practices is proposed which may either reduce the amount and grade of steel required to contain a specified internal pressure or permit the working pressure to be increased for a specified weight and grade of pipe. One of the more important considerations in casing design is its resistance to collapse; however, Bowers' and, more recently, O'Brien and Goins have shown many casing programs are unnecessarily conservative in this respect, and they have indicated how savings can be made by designing for more realistic down-hole conditions. Earlier, Saye and Richardson showed that pipe costs could be reduced by considering the cement sheath as a part of the casing string when collapse resistance was being calculated. More recently, Rogers has raised the question as to whether a cement sheath might be considered in the design for burst resistance of the cemented casing. Calculations have been made for the increased burst resistance a cement sheath would provide for casing in a wellbore, and the results show that a sizable amount of support could be obtained in some instances. These data are presented in addition to a discussion of several other factors that are considered to affect the burst strength of pipe supported by cement. Two types of support are treated: Case I for tensile loading of the unconfined cement sheath, and Case II for compressive loading of the confined cement sheath. ANALYTICAL TREATMENT AND RESULTS CASE I-TENSILE STRESSES IN AN UNCONFINED CEMENT SHEATH Conditions like this would most likely occur in a greatly enlarged portion of the hole where the cement was not in immediate contact with either the formation or a thin and hard mud cake. The mathematical analysis for this condition, as shown in the Appendix, rests on the following concepts. Pressure inside a unit length of pipe causes:a tensile or tangential stress to be exerted over the longitudinal cross-sectional areas of the pipe and cement; andan equal amount of strain in both the pipe and cement that is uniformly distributed over the wall thickness of each. This analysis was then used to make several calculations for a cement sheath around 5 1/2-in. OD pipe. The results are illustrated in Fig. 1, which shows that a tensile stress of 500 psi is imposed on a 5-in. thick sheath when the casing contains a pressure of only 1,450 psi. It also shows that a 10-in. thick sheath would be stressed to 500 psi in tension when the pipe contained a pressure of only 2,350 psi. Alternatively, if the stress analysis is made by means of the Lame thick-wall cylinder theory, the inner fibers of the 10-in. thick sheath will be stressed to 500 psi in tension when the pressure in the pipe is only 990 psi. This, of course, reveals that an unconfined sheath is of little support to the pipe in burst; however, an entirely different result is obtained when the cement is confined between the pipe and formation. JPT P. 1033^

Publisher

Society of Petroleum Engineers (SPE)

Subject

Strategy and Management,Energy Engineering and Power Technology,Industrial relations,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3