Effect of Drillpipe Rotation on Hole Cleaning During Directional-Well Drilling

Author:

Sanchez R. Alfredo1,Azar J. J.1,Bassal A. A.2,Martins A. L.3

Affiliation:

1. U. of Tulsa

2. Gearhart United Pty. Ltd.

3. Petrobrás

Abstract

Summary The effect of drillpipe rotation on hole cleaning during directional-well drilling is investigated. An 8 in. diameter well-bore simulator, 100 ft long, with a 412 in. drillpipe was used for the study. The variables considered in this experimental work are: rotary speed, hole inclination, mud rheology, cuttings size, and mud flow rate. Over 600 tests were conducted. The rotary speed was varied from 0 to 175 rpm. High viscosity and low viscosity bentonite muds and polymer muds were used with 14 in. crushed limestone and 110 in. river gravel cuttings. Four hole inclinations were considered: 40°, 65°, 80°, and 90° from vertical. The results show that drillpipe rotation has a significant effect on hole cleaning during directional-well drilling, contrary to what has been published by previous researchers who forced the drill-pipe to rotate about its own axis. The level of enhancement due to pipe rotation is a function of the simultaneous combination of mud rheology, cuttings size, and mud flow rate. Also it was observed that the dynamic behavior of the drillpipe (steady state vibration, unsteady sate vibration, whirling rotation, true axial rotation parallel to hole axis, etc.) plays a major role on the significance in the improvement of hole cleaning. Generally, smaller cuttings are more difficult to transport. However, at high rotary speed and with high viscosity muds, the smaller cuttings seem to become easier to transport. Generally, in inclined wells, low viscosity muds clean better than high viscosity muds, depending on cuttings size, viscosity, and rotary speed level.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3