Transition Time of Cement Slurries Between the Fluid and Set States

Author:

Sabins Fred L.1,Tinsley John M.1,Sutton David L.2

Affiliation:

1. Halliburton Services

2. Halliburton Service

Abstract

Abstract Previous work on annular gas flow has shown that the behavior of cement between its fluid and set states is the controlling factor that may allow gas entry. This transition phase of cement previously has not been recognized in slurry design since its importance was not understood fully and since test procedures for its definition had not been presented or established. To predict the occurrence of annular gas flow and to design cement slurries capable of helping to prevent annular gas flow, it is necessary to define the slurry characteristics at the beginning and end of this transition period as well as the length of time of the transition state. Test techniques have been developed to study the start of this transition period. Additional tests have been conducted to define the condition of cement required to prevent gas entry. The test techniques developed to define this transition period of a cement slurry are described. Numerous job variables such as pumping time, placement time, slurry composition, and circulating temperature and pressure were investigated to evaluate their influence on transition time. A method for using transition time and static gel strength (SGS) development data to help predict annular gas flow and to evaluate annular gas flow control materials is discussed. Introduction Annular gas flow (also called gas leakage) refers to the flow or migration of gas in a cemented casing/borehole annulus. Annular gas flow has long been recognized as causing severe problems, including communication between producing zones, flow into shallow sands, and gas flow to the surface. Gas flow back to the surface in as little as 30 minutes after completing primary cementing has been reported, but interzone communication may not be evident until weeks or even months after completion of the well. Some minor interzone gas flow problems can be lived with (usually with some sacrifice in production), but control usually is demanded, and stopping gas leakage after it occurs always means expensive remedial work. Designing To Prevent Gas Flow Understanding the mechanics of gas flow through a cement column and the prediction of this gas flow requires additional knowledge of the downhole cement behavior. In addition to the usual slurry properties, well data and formation pressure, the prediction method uses a parameter called transition time. Briefly, the transition time is the period during which the slurry changes from a true hydraulic fluid to a highly viscous mass showing some solid characteristics. The transition time starts when the slurry develops enough SGS to restrict transmission of full hydrostatic pressure and ends when the cement develops enough solid characteristics to control percolation of gas through the cement column. With this definition of transmission time, annular gas flow can be prevented if the pressure in the cement adjacent to the high-pressure gas zone can be maintained at a value greater than or equal to the gas reservoir pressure until the end of the transition time. SPEJ P. 875^

Publisher

Society of Petroleum Engineers (SPE)

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3