Proactive Prevention of Ferromagnetic Iron-Induced RSS Tool Failures Using Novel Testing Techniques and Operational Modifications.

Author:

Hadley Dylan1,Watts Luke1,Russell Ryan1,Okesanya Temi1,Heath Garett1

Affiliation:

1. Canadian Energy Services

Abstract

AbstractThe ubiquity of complicated and extended-reach horizontal wellbores with tighter windows has spurred the copious use of the rotary steerable system (RSS) in drilling operations. This magnetic-powered RSS technology, initially designed for the offshore drilling market, has proven to be an effective solution to the increasingly complex challenges in the land-based market. Although durable, as with other mechanical devices, equipment failure and malfunction may occur during drilling operations. The impairments of these expensive high-end systems while drilling often lead to costly trips and NPTs, which can be avoided with regular maintenance practices. Apart from these regular maintenance practices, it is also paramount to devise proactive techniques while drilling that will enhance the life cycle of these systems and prevent rampant and uneconomical trips.This paper presents a proven methodology that was used to eliminate the rampant RSS tool failures encountered on multiple rigs in Southern Alberta, Canada. While RSS tool failures have traditionally been attributed to the barite and mud system, scientific root cause analysis showed that ferromagnetic iron metal generated from different sources while drilling induced these failures. Ferromagnetic Iron has the potential to cause interference with downhole magnetic tools, causing them to fail and have solids entrapped in them.An ingenious operational procedure was devised and implemented using strategically generated magnetic fields in the mud circulation system at different locations. These magnetic fields strip the mud system of ferromagnetic materials to prevent damage to RSS tools. This procedure was also backed up with a novel testing technique that identifies and quantifies the presence of ferromagnetic materials in the mud system, which can be tracked on the daily drilling report or posted on a digital database. The test results help engineers detect the buildup of ferromagnetic iron in the mud system (indicating the strength of the magnetic fields) and the appropriate mitigation strategy to employ, which may include strengthening the magnetic fields and using centrifuges depending on the scenario.This successful approach eliminated RSS tool failures on multiple rigs and reduced Tool-Failure NPTs drastically by over 47% on average. This paper breaks down, showcases, and elucidates a practical engineering solution to a prevalent drilling problem, with easy-to-follow steps that can be replicated by mud engineers and technicians anywhere in the world.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3