Deep Learning Models for the Prediction of Mineral Dissolution and Precipitation During Geological Carbon Sequestration

Author:

Tariq Zeeshan1,Yildirim Ertugrul Umut1,Yan Bicheng1,Sun Shuyu1

Affiliation:

1. King Abdullah University of Science & Technology

Abstract

Abstract In Geological Carbon Sequestration (GCS), mineralization is a secure carbon dioxide (CO2) trapping mechanism to prevent possible leakage at later stage of the GCS project. Modeling of the mineralization during GCS relies on numerical reservoir simulation, but the computational cost is prohibitively high due to the complex physical processes. Therefore, deep learning (DL) models can be used as a computationally cheaper and at the same time, reliable alternative to the conventional numerical simulators. In this work, we have developed a DL approach to effectively predict the dissolution and precipitation of various important minerals, including Anorthite, Kaolinite, and Calcite during CO2 injection into deep saline aquifers. We established a reservoir model to simulate the process of geological CO2 storage. About 750 simulations were performed in order to generate a comprehensive dataset for training DL models. Fourier Neural Operator (FNO) models were trained on the simulated dataset, which take the reservoir and well properties along with time information as input and predict the precipitation and dissolution of minerals in space and time scales. During the training process, root-mean-squared-error (RMSE) was chosen as the loss function to avoid overfitting. To gauge prediction performance, we applied the trained model to predict the concentrations of different mineral on the test dataset, which is 10% of the entire dataset, and two metrics, including the average absolute percentage error (AAPE) and the coefficient of determination (R2) were adopted. The R2 value was found to be around 0.95 for calcite model, 0.94 for Kaolinite model, and 0.93 for Anorthite model. The R2 was calculated for all trainable points from the predictions and ground truth. On the other hand, the average AAPE for all the mappings was calculated around 1%, which demonstrates that the trained model can effectively predict the temporal and spatial evolution of the mineral concentrations. The prediction CPU time (0.2 seconds/case) by the model is much lower than that of the physics-based reservoir simulator (3600 seconds/case). Therefore, the proposed method offers predictions as accurate as our physics-based reservoir simulations, while provides a huge saving of computation time. To the authors' best knowledge, prediction of the precipitation and dissolution of minerals in a supervised learning approach using the simulation data has not been studied before in the literature. The DL models developed in this study can serve as a computationally faster alternative to conventional numerical simulators to assess mineralization trapping in GCS projects especially for the mineral trapping mechanism.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3