An Effective Method of Estimating Nuclear Magnetic Resonance Based Porosity Using Deep Learning Approach

Author:

Tariq Zeeshan1,Gudala Manojkumar1,Xu Zhen1,Yan Bicheng1,Sun Shuyu1,Mahmoud Mohamed2

Affiliation:

1. King Abdullah University of Science and Technology

2. King Fahd University of Petroleum & Minerals

Abstract

Abstract Carbonate rocks are very heterogeneous and have very complex pores structure due to the presence of intra-particle and inter-particle porosities. This makes the characterization and evaluation of the petrophysical data, and the interpretation of the carbonate rocks a big challenge. Porosity in complex lithologies, particularly carbonate reservoirs, is difficult to measure using conventional (Quad-Combo) well logs. Nuclear Magnetic Resonance (NMR) derived porosity is considered the total porosity "gold standard", as it is measured exclusive of matrix and mineralogy. However, due to NMR tools existing as relatively new technology, and the extra expense in logging runs and rig time, most wells lack these data. Most of the existing approaches to predict the rock porosity was developed on the Neutron-density porosity logs that usually are resulted in inaccurate estimation, especially in the fractured zone and highly dolomitized rocks. In this study, deep learning model was efficiently utilized to predict the Nuclear Magnetic Resonance based effective porosity in carbonate rocks. The petrophysical well logs such as bulk density, gamma-ray, neutron porosity, photoelectric log, and caliper log were used as predictors. A total of 3800 data points were obtained from several wells located in a carbonate reservoir. A comprehensive data exploratory analysis tools (EDA) was utilized to evaluate the quality of the dataset which led to removing the extreme values and outliers. A fully connected Deep Neural Network (DNN) was trained to predict NMR based effective porosity. The hyperparameters of DNN model such as number of hidden layers, number of neurons, activation functions, and learning algorithms were varied using a grid search optimization approach. The K-fold cross-validation criteria were used to enhance the generalization capabilities of ML models. The evaluation of ML models was assessed by the coefficient of determination (R2), root means square error (RMSE), and. average absolute percentage error (AAPE). The results showed that the DNN resulted in a significantly low error and high R2 between actual and predicted values. An accuracy of 87% was recorded between actual and predicted NMR values. The new model to predict the NMR porosity is trained on the NMR-determined porosity. NMR porosity is based on the number of hydrogen nuclei in the pore spaces that are independent of the rock minerals and related to the pore spaces only.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3