Fracturing Fluid and Geomechanics Integration Solves Hydraulic Fracturing in the HP/HT Triassic – Jurassic Petroleum System, Krishna Godavari Basin, India

Author:

Gondalia Ravi Ramniklal1,Kumar Rajeev Ranjan1,Zacharia Joseph1,Shetty Varun1,Bandyopadhyay Atanu1,Narayan Shashank1,Bordeori Krishna1,Singh Mukund Murari1,Shah Arpit1,Choudhary Dinesh1,Sharma Lovely1,Ray Maria Fernandes1,Sarkar Samarpita1,Moulali Shaik2,Das Santanu2,Rao Dasari Papa2

Affiliation:

1. Schlumberger

2. Oil and Natural Gas Corporation Limited

Abstract

Abstract The Triassic–Jurassic petroleum system reserves in Krishna Godavari Basin are found at 3500 to 4500 m depth with bottomhole static temperature (BHST) ranging from 270 to 340°F. Hydraulic fracturing is required to produce economically from these wells because the in-situ permeability of these sands is in the range of ~ 0.01 md. Hence, after perforations, minimal production is observed or the flash production from these wells dies out in a short time span. Between 2010 and 2017, several appraisal wells were drilled and completed using hydraulic fracturing in the onshore Krishna Godavari Basin. However, the success rate of effective fracture placement and sustained production enhancement due to hydraulic fracturing was limited. This was attributed to insufficient understanding of rock mechanical properties and lack of a refined fluid fracturing system despite using a superior fluid system like carboxymethyl hydroxypropyl guar (CMHPG) with organometallic zirconate-based crosslinkers. In 2018, nine wells were successfully hydraulically fractured, and sustained production from these wells was established using a simple borate-based crosslinked fluid system. A key change for the field was rather than designing and pumping fracturing fluid based on only BHST, one of the critical components that led to better proppant placement is the stable fracturing fluid that was fine tuned for the well based on factors like change of source water, tubular shear exposure time for designed fracturing treatment pumping rate, and hydrocarbon properties. This combination of rock mechanical properties and fracturing fluids used is captured as the efficiency of the fluid system, and this governed the usage of fluid loss additives, again a novel introduction for the field. Finally, the key to producing these sands was adequate cleanup and minimal guar residue to maximize the proppant pack conductivity. The paper also discusses the strategy to design fluids with minimal guar loading to reduce polymer retention and to achieve maximum fracture fluid recovery. This robust management of fracturing fluids along with understanding of rock mechanical properties can be seen in the post-fracturing production results.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3