Cement Sheath Integrity during Hydraulic Fracturing: An Integrated Modeling Approach

Author:

Wang W..1,Dahi Taleghani A..1

Affiliation:

1. Department of Petroleum Engineering, Louisiana State University

Abstract

Abstract Recent arguments about the possibility of underground water pollution in particular regions have raised significant concerns regarding wellbore integrity during hydraulic fracturing in shallow formations. In this paper, we take a look at the containment of annulus cracks that might develop during hydraulic fracturing treatments. Wellbore integrity is highly dependent on the integrity of the bonding between the cement and the formation as well as the bonding between casing and cement. Cement heterogeneity resulted from unsmooth borehole surfaces, complex geological conditions, mud cakes, and cement contamination. Excessive fluid pressure during hydraulic fracturing could provide the driving force not only for initiation and propagation of fractures in longitudinal and transverse directions, but also in cases of low confining pressure, it may lead to fracture propagation around the casing, i.e. annulus cracks. A coupled three-dimensional poroelastic model with embedded cohesive zones is used to simulate different fracture propagation scenarios that may occur in vertical and horizontal wells during hydraulic fracturing stimulations. The cohesive layer theory is utilized to model initiation and propagation of transverse, longitudinal and delamination fractures. Using the numerical analysis provided in this paper, few hydraulic fracturing cases were simulated by taking the advantage of the treatment pressure data and petrophysical logs, and the results were compared with the post-treatment radioactive tracer logs available for these wells.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3