A Quantum Gravity AI Framework for CO2 Storage Monitoring and Optimization

Author:

Katterbauer Klemens1,Al Shehri Abdallah1,Al Qasim Abdulaziz1

Affiliation:

1. Saudi Aramco

Abstract

Abstract Gravimetry is a physical method with a large depth of investigation. Traditional applications include surface gravity observations for mining and oil exploration and borehole gravity logging for investigating formation bulk density. Quantum gravity sensors have recently been developed allowing to achieve considerably higher accuracy and signal to noise ratios as compared to conventional gravimetric approaches. Borehole gravity data have some advantages over the surface data, because the sensors are closer to the reservoir better spatial resolution is obtained; and because the deep borehole gravity data are less affected than surface data by near surface changes. We have developed a new AI driven framework for the interpretation and monitoring of CO2 migration for CO2 storage applications. The framework utilize an integrated LSTM -Bayesian inference framework approach that to determine the gravity gradient within the reservoir and infer from this the possible movement in the reservoir. The LSTM framework evaluates the time lapse gravity gradient changes to infer from it the migration of the CO2 movement. We evaluated the framework on a public benchmark dataset of the Pohokura field in New Zealand. The Pohokura field in New Zealand has been investigated as a reservoir for CO2 storage given its acceptable reservoir quality and seal rock structure. The framework was evaluated on simulated CO2 storage migration patterns with multiple scenarios, taking into account the uncertainties that may arise with respect to various potential CO2 migration scenarios. The study outlines the enhanced accuracy and tracking of CO2 front movement within the reservoir based on quantum gravity sensors integrated with an AI framework. The deep learning framework represents an important step at utilizing quantum borehole gravity sensing for CO2 movement monitoring and the optimization of CO2 storage. The AI framework outlined the considerable potential of quantum gravity sensing for CO2 storage monitoring and optimization.

Publisher

SPE

Reference13 articles.

1. 4D gravity monitoring—Introduction;Biegert;Geophysics,2008

2. Quantum sensing;Degen;Reviews of modern physics,2017

3. Mobile quantum gravity sensor with unprecedented stability;Freier,2016

4. Todd v Shell and OMV: implications for JV parties of using model agreements;Gundersen;The Journal of World Energy Law & Business,2011

5. Three-dimensional structural and petrophysical modeling for reservoir characterization of the Mangahewa formation, Pohokura Gas-Condensate Field;Islam,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3