Hyper-Reduced-Order Models for Subsurface Flow Simulation

Author:

Yoon Seonkyoo1,Alghareeb Zeid M.2,Williams John R.1

Affiliation:

1. Massachusetts Institute of Technology

2. Saudi Aramco, Dhahran

Abstract

Summary Subsurface flow modeling is an indispensable task for reservoir management, but the associated computational cost is burdensome because of model complexity and the fact that many simulation runs are required for its applications such as production optimization, uncertainty quantification, and history matching. To relieve the computational burden in reservoir flow modeling, a reduced-order modeling procedure based on hyper-reduction is presented. The procedure consists of three components: state reduction, constraint reduction, and nonlinearity treatment. State reduction based on proper orthogonal decomposition (POD) is considered, and the impact of state reduction, with different strategies for collecting snapshots, on accuracy and predictability is investigated. Petrov-Galerkin projection is used for constraint reduction, and a hyper-reduction that couples the Petrov-Galerkin projection and a “gappy” reconstruction is applied for the nonlinearity treatment. The hyper-reduction method is a Gauss-Newton framework with approximated tensors (GNAT), and the main contribution of this study is the presentation of a procedure for applying the method to subsurface flow simulation. A fully implicit oil/water two-phase subsurface flow model in 3D space is considered, and the application of the proposed hyper-reduced-order modeling procedure achieves a runtime speedup of more than 300 relative to the full-order method, which cannot be achieved when only constraint reduction is adopted.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3