Low-Temperature-Oxidation Reaction Kinetics and Effects on the In-Situ Combustion Process

Author:

Dabbous Mahmoud K.1,Fulton Paul F.1

Affiliation:

1. U. of Pittsburgh

Abstract

Abstract The kinetics of low-temperature oxidation (LTO) of crude oils in porous media was studied. Isothermal integral reactor data were analyzed to obtain rate equations for the over-all rate of the partial oxidation reactions at temperatures below partial oxidation reactions at temperatures below 500 deg. F. The reaction order with respect to oxygen was found to be between 0.5 and 1.0. The order of the reaction was dependent upon the crude but independent of the properties of the porous medium. The activation energy of the reaction was insensitive to the type of crude or porous medium and is in the neighborhood of 31,000 Btu/lb mol. LTO reactions were found to be in the kinitics-influenced region. The measured reaction rates for a 19.9 deg. API and a 27.1 deg. API crude indicated higher oxidation rates under similar reaction conditions for the higher API gravity crude. Light crudes appear to be m ore susceptible to partial oxidation at low temperatures because of the react ed oxidation reactions rather than by carbon oxidation. Other information includes the fraction of reacted oxygen utilized in carbon atom oxidation by the LTO reaction and the molar ratio of CO2 and CO produced in the low-temperature region. Effect of partial oxidation of the crude on the in-situ combustion process was studied by experimentally simulating the zones preceding the combustion front where temperatures and injection rates of linear reservoir model were programmed with time according to a predesigned schedule. Oxidation of the crude at temperatures below 400 deg.F had significant effects on the behavior of the crude-oil/water system in the porous medium at elevated temperatures and on the fuel available for combustion. A substantial decline in the recoverable oil from the evaporation and cracking zones, an increase in fuel deposition, and drastic changes in fuel characteristics and coked sand properties were obtained when the crude was subjected to LTO during the simulation process. Introduction The application of thermal energy to petroleum reservoirs as a means of increasing crude oil recovery has been given a great deal of attention. In underground combustion, thermal energy is induced by the partial burning of the crude oil in situ. The production of heat by the exothermic oxidation reactions of the hydrocarbons constitutes a unique feature of the in-situ combustion process. The chemical reactions and the accompanying heat released create a new temperature profile and cause drastic redistribution in the reservoir fluid saturations. With oxygen available in the transient zones of variable temperature and hydrocarbon saturations, several oxidation reactions of differing nature can take place during an underground combustion process. Because of the complex composition of process. Because of the complex composition of crudes and the great number of reaction products that can be produced, it is convenient to classify the hydrocarbon oxidation reactions ascombustion reactions that take place in the high-temperature combustion zone (above 600 deg. F) with CO2, CO, and H2O as the principal reaction products andpartial oxidation or low-temperature products andpartial oxidation or low-temperature (LTO) reactions that occur in zones where the temperature is lower than 600 deg. F. Several partial oxidation reactions are known to take place, producing primarily water and oxygenated producing primarily water and oxygenated hydrocarbons such as carboxylic acid aldehydes, ketones, alcohols, and hydroperoxides. High-temperature combustion reactions are desirable because they generate most of the heat required for the in-situ combustion process. Partial oxidation reactions, on the other hand, are in most cases undesirable because of their adverse effect on the viscosity and distillation characteristics of the crude. SPEJ P. 253

Publisher

Society of Petroleum Engineers (SPE)

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3