Barium Sulfate Scaling and Control during Polymer, Surfactant, and Surfactant/Polymer Flooding

Author:

Al Kalbani M. M.1,Jordan M. M.2,Mackay E. J.1,Sorbie K. S.1,Nghiem L..3

Affiliation:

1. Heriot-Watt University

2. Nalco Champion

3. Computer Modelling Group Ltd.

Abstract

Summary Barium sulfate (BaSO4) scale is a serious problem that is encountered during oilfield production and has been studied mainly for fields undergoing waterflooding. Chemical enhanced oil recovery (cEOR) processes involve interactions between the injected brine and the formation brine, rock and oil. Very little work has appeared in the literature on how cEOR processes can influence the severity of the mineral scaling problem that occurs in the field and how this can be managed. This study investigates barium and sulfate coproduction behavior, the deposition of BaSO4 in the formation and in the producer wellbore, and its inhibition during polymer, surfactant, and surfactant/polymer (SP) flooding cEOR processes. To aid the cEOR economic decision, assessment of the impact of cEOR flooding type on both scale management and oil recovery is performed. Reservoir simulation has been used in this study, employing homogenous and heterogeneous two-dimensional (2D) areal and vertical models. Data from the literature are used to define the parameters controlling the physical and chemical functionality of anionic surfactant and partially hydrolyzed polyacrylamide (HPAM) polymer [e.g., oil/water interfacial tension (IFT), IFT, polymer viscosity, and SP adsorption]. Assessment is made of the minimum inhibitor concentration (MIC) required to control the scale that is predicted to occur due to the changes in brine composition induced by the water and chemical flooding processes. The expected retention and release of a phosphonate scale inhibitor (SI) during squeeze treatments in the production wells is modeled. The high viscosity and more stable HPAM polymer slug reduces the mixing between the injected and the formation brines, especially with low-salinity low-sulfate (SO42−) make-up brine, reducing BaSO4 scale precipitation in the formation, delaying and reducing the potential scale risk in the producer wellbore compared to normal waterflooding. During surfactant flooding, from an oil recovery perspective, the optimal phase type and salinity can be any of the three microemulsion (ME) phase types, depending on the system multiphase parameters. However, the scaling risk can be different to that in the waterflooding case, depending on the IFT, ME phase type, the injected salinity, and sulfate concentration. In SP flooding, low-salinity make-up brine is preferred to enhance oil recovery, and it also delays and reduces scale risk. The impact of the injection brine salinity, SO42− concentration, and changing brine composition due to ion reactions affects the produced water rates, the number of required squeeze treatments and MIC values over time. This, then, impacts the inhibitor retention and release, which influences the treatment volumes and cost required to control scale over field life. Considering the economic impact of cEOR flood type on both oil recovery and scale management, low-salinity SP flooding is demonstrated to be the most viable option, showing the highest positive net present value (NPV). The study shows that barium and sulfate coproduction and the evolving scale risk depend on the mobility ratio (which is determined by the injected brine and oil viscosities) on the oil/water IFT, on the level of chemical adsorption, and on the selected brine salinity. The severity of the scale risk is also impacted by the flood techniques used, with the extent of reservoir reactions having an effect on the MIC required to control scale and the squeeze treatment volumes required to maintain production after breakthrough.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3