Dynamic Characterization of Pore Structures in Hydrate-Bearing Sediments During Hydrate Phase Transition

Author:

Chen Mingqiang1,Li Qingping1,Zhou Shouwei2,Pang Weixin1,Lyu Xin1,Zhu Junlong1,Fu Qiang1,Lyu Chaohui3,Ge Yang1

Affiliation:

1. Research Center of China National Offshore Oil Corporation / State Key Laboratory of Natural Gas Hydrates

2. State Key Laboratory of Natural Gas Hydrates / China National Offshore Oil Company, Beijing, China

3. China University of Petroleum, Beijing

Abstract

Abstract Natural gas hydrate widely distributed in marine sediments and permafrost has brought great attention due to its large reserves. Unlike conventional reservoirs, the effective pore structures vary from time and space due to hydrate dissociation and secondary formation in the development, which produces significant impacts on gas flow and production. Therefore, figuring out the evolution of dynamic pore structures is of great importance for the efficient development of hydrate deposits. In this work, excess-water hydrate formation method was combined with micro-computed tomography to study hydrate transition effects on the evolution of dynamic pore structures. Gas state equation and chemical reaction dynamics were combined for separating the representative 3D images at different stages of hydrate formation into four phases, which are respectively hydrate, water, gas and solid skeleton. Hydrate pore habit evolution, formation characteristics, spatial distribution heterogeneity and its effect on the effective porosity variation were studied in detail. Afterwards, a modified maximal ball method was employed to extract hydrate-bearing pore networks at different stages of hydrate phase transition. Hydrate phase transition effects on the effective pore and throat radii distributions, pore and throat cross-sections, throat lengths and distance among connected pore bodies, as well as pore topology were further investigated based on the extracted networks. Results show that hydrate pore habit varies in porous media during hydrate formation with the main pore habit of pore filling mode. Hydrate spatial distribution exhibits some heterogeneity, causing diverse hydrate saturation at different layers during hydrate phase transition. Hydrate disrupted pore integrity to some extent, resulting in more extracted pore bodies and throats with increased hydrate saturation. In addition, hydrate phase transition reduces pore-throat radii and distribution regularity to different degrees, and results in more irregular pore-throat morphology, decrease of throat length and distance among connected pore bodies as well as poorer connectivity at the same time. This study provides a novel insight in better understanding the evolution of dynamic pore structures and lays a good foundation for the effective development of natural gas hydrate deposits.

Publisher

SPE

Reference42 articles.

1. Visualization of hydrate formation during CO2 storage in water-saturated sandstone;Almenningen;International Journal of Greenhouse Gas Control,2018

2. Magnetic Resonance Imaging of Gas Hydrate Formation in a Bed of Silica Sand Particles;Bagherzadeh;Energy & Fuels,2011

3. Physical mechanisms for multiphase flow associated with hydrate formation;Behseresht;Journal of Geophysical Research: Solid Earth,2017

4. Current perspectives on gas hydrate resources;Boswell;Energy Environ Sci,2011

5. Ostwald ripening changes the pore habit and spatial variability of clathrate hydrate (in English);Chen,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3