Heavy Organic Deposit Formation Damage Control, Analysis and Remediation Techniques

Author:

Al-Qasim Abdulaziz1,Alsubhi Mutaz1,Al-Anazi Amer1

Affiliation:

1. Saudi Aramco

Abstract

Abstract Formation damage resulting from organic and inorganic depositions, such as calcium carbonate, asphaltene and paraffin, is one of the most commonly encountered types of damage in the oil and gas industry. These depositions are usually associated with a decrease in crude productivity, accelerated failure of production completions, such as from electric submersible pumps (ESPs), and less footage coverage while running with production and flow profile logging tools. The major concern highlighted is the increased probability of having more organic deposits in the wellbore as a result of the increased scale of the inorganic deposits. A thick, heterogeneous sludge mix of hydrocarbons and solid materials is a critical subject for characterization and solubility measurements. Analyzed deposit samples were collected either while running with production logging tools, when pulling out a failed ESP, or when lowering the completion equipment. The hydrocarbon phase was removed by organic solvent and the precipitated solid materials were collected for a lab analysis and solubility test. The solid phase analyses included X-ray diffraction (XRD) analysis and scanning/transmission electron microscopy (SEM and TEM). The composition of organic deposit samples was investigated using saturates, aromatics, resins, and asphaltenes (SARA) characterization, Fourier transform infrared analysis (FTIR) and Fourier transform ion cyclotron resonance mass spectrometry (FTMS). The sludge sample solubility tests were conducted over a variety of organic solvents at different temperatures, up to 300°F with a solid mass/liquid volume ratio of 1:10. The paper presents a typical analysis procedure of organic deposits collected from downhole equipment. The XRD analysis of solid debris materials (inorganic) present in collected sticky materials samples showed that the materials contained mainly carbonate compounds; for instance, calcite-CaCO3, dolomite-CaMg(CO3)2, and Halite-NaCl. These materials were completely soluble in acids like 15 wt% of HCl at reservoir conditions. Calcite scale would have been a problem in cases where the calcium content exceeded 12,000 mg/L. Low solubility results were obtained with static reaction of organic solvents recipes with the sticky materials around 17 to 50 wt%. This, in turn, increased solubility up to 98% as observed from the reaction in dynamic conditions.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3