Investigate Proppant Transport with Varying Perforation Density and its Impact on Proppant Dune Development Inside Hydraulic Fractures

Author:

Ba Geri Mohammed1,Imqam Abdulmohsin1,Suhail Mohammed2

Affiliation:

1. Missouri University of Science and Technology

2. King Saud University

Abstract

Abstract Proppant transport adequately during hydraulic fracturing treatment assumes same perforation contribution through multi-perforation system. Proppant transport performance into the different ordination fracture system using multi-entry perforation technique is still not fully understood. This experimental study was aimed to deeply investigate five factors that affect proppant transport performance: number of perforations, perforation opening size, shear rate, fracture orientation, and proppant size distribution. The impact of these factors on proppant transport performance from different perspective was studied. Fracture slot model was designed and built to observe easily the effects of perforation density and fracture orientation. The results of this experimental work show that limited-entry perforation technique has significant impact on proppant transport within fractures where single top perforation had better proppant placement than multi-perforation system. Fracture area was approximately propped with 66% and 48% using top perforation and multi-perforation system, respectively. Slurry with high shear rate has a negative effect on the proppant equilibrium dune level (EDL) and fracture propped area (FPA). Fracturing treatment using high shear rate causes high pressure drop in the fracture that leads to decreasing EDL by 17% and fracture propped area by 23% comparing to using low shear rate. Using large proppant size (20/40) leads to form high EDL and FPA compared to 100 mesh size. Proppant transport dominated by four mechanisms and the vertexes near wellbore plays main mechanism to carry proppant farther inside the fracture.

Publisher

SPE

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3