Optimization of Multilateral Well Design and Location in a Real Field Using a Continuous Genetic Algorithm

Author:

Bukhamsin Ahmed Y.1,Farshi Mohammad Moravvej2,Aziz Khalid2

Affiliation:

1. Saudi Aramco/Stanford University

2. Stanford University

Abstract

Abstract As many fields around the world are reaching maturity, the need to develop new tools that allow reservoir engineers to optimize reservoir performance is becoming more urgent. One of the more challenging and important problems along these lines is the well placement optimization problem. In this problem, there are many variables to consider: geological variables like reservoir architecture, permeability and porosity distributions, and fluid contacts; production variables, such as well placement, well number, well type, and production rate; and economic variables like fluid prices and drilling costs. Furthermore, availability of complex well types, such as multilateral wells (MLWs) and maximum reservoir contact (MRC) wells, aggravate this challenge. All these variables, together with reservoir geological uncertainty, make the determination of an optimum development plan for a given field difficult. The objective of this work was to employ an optimization technique that can efficiently address the aforementioned challenges. Based on the success and versatility of Genetic Algorithms (GAs) in problems of high complexity with high dimensionality and nonlinearity, it is used here as the main optimization engine. Both binary GA (bGA) and continuous GA (cGA) were tested in the optimization of well location and design in terms of well type, number of laterals, and well and lateral trajectories in a channelized synthetic model. Both GA variants showed significant improvement over initial solutions but comparisons between the two types showed that the cGA was more robust for the problem under consideration. The cGA was, thereafter, applied to a real field located in the Middle East to investigate its robustness in optimizing well location and design in more complex reservoir models. The model is an upscaled version for an offshore carbonate reservoir, which is mildly heterogeneous with low and high permeability areas scattered over the field. After choosing the optimization technique to achieve our objective, considerable work was performed to study the sensitivity of the different algorithm parameters on converged solutions. Then, multiple optimization runs were performed to obtain a sound development plan for this field. An attempt was made to quantify how solutions were affected by some of the assumptions and preconditioning steps taken during optimization. Finally, an optimization ran was performed on the fine model using optimized solutions from the coarse model. Results showed that the optimum well configuration for the reservoir model at hand can contain five or more laterals; which shows potential for drilling MRC wells. Other studies comparing results from the fine and coarse reservoir models revealed that the best solutions are different between the two models. In general, solutions from different runs had different well designs due to the stochastic nature of the algorithm but some guidance about preferred well locations could be obtained through this process

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3