Affiliation:
1. The University of Texas at Austin
Abstract
Summary
Scale deposition in surface and subsurface production equipment is one of the common problems during oil production, resulting in equipment corrosion, wellbore plugging, decrease in production rate, and frequent remediations. In this work, a detailed procedure is presented through which a compositional wellbore simulator is developed with the capability of modeling comprehensive geochemical reactions.
The compositional wellbore simulator (UTWELL) is developed by applying different numerical approaches and flow-regime-detection methods to accurately model multiphase flow in the wellbore. In addition, several deposition mechanisms are incorporated for the transportation, entrainment, and deposition of solid particles in the wellbore. Subsequently, a geochemical module, IPhreeqc, is integrated into the wellbore model to handle homogeneous and heterogeneous, reversible and irreversible, and ion-exchange reactions under either local-equilibrium or kinetic conditions. This package provides a robust, flexible, and accurate integrated tool for mechanistic modeling of scale deposition in the wellbore.
Through our integrated simulator, deposition profiles of carbonate and sulfate scales in the wellbore are predicted for several case studies. Significant effects of physiochemical properties (such as pressure, temperature, salinity, and pH value) on the scale deposition in the wellbore are discussed. In addition, comparing simulation results with experimental data reveals that hydrocarbon-phase dissolution has a significant effect on geochemical calculations compared with the temperature/pressure variation effects.
To the best of our knowledge, there is no comprehensive simulator available in the industry through which scale deposition in the wellbore can be predicted accurately. In this paper, scale deposition profile in the wellbore is estimated by including the interaction of the hydrocarbon and aqueous phases and its effect on the aqueous-scale geochemistry (by use of a compositional wellbore simulator); effects of parameters that vary greatly in the wellbore (pressure, temperature, and pH value); and comprehensive geochemistry simulation (provided through coupling of the wellbore simulator with IPhreeqc). The outcome of this study yields a comprehensive tool for scale deposition prediction in the wellbore and will help scale deposition risk-management and mitigation plans.
Publisher
Society of Petroleum Engineers (SPE)
Subject
Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献