Fluid-Pulse Technology Boosts Oil Recovery

Author:

Davidson Brett1

Affiliation:

1. Wavefront Technology Solutions

Abstract

Technology Update A unique fluid-pulse technology has generated impressive increases in ultimate oil recovery in applications in North and South America and the Middle East. Developed in Alberta, Canada, the fluid-pulse technology has proved its ability to recover oil previously left behind in fields thought to be depleted or uneconomical—potentially billions of barrels globally. In addition to driving the phenomenal growth of the Alberta oil sands, Canada’s oil industry has developed a depth and breadth of experience in some of the world’s harshest conditions. Those harsh conditions often create opportunities for new technologies to show their capabilities to a largely cautious industry. A recent report by the United States Energy Information Administration notes that the US imported about 45% of the 18.8 million B/D of crude oil and petroleum products it consumed in 2011. Although dependence on foreign petroleum has declined since peaking in 2005, the quest is still on for ways to increase domestic production and reduce reliance on imports. Fluid-pulse technology is one way to revive oil fields by recovering more barrels, flattening decline curves, and reducing production costs. Pulsating Injection Stream While waterflooding techniques have been used for secondary oil recovery since the 1920s, fluid-pulse injection optimization brings much higher efficiency to these methods. With most US production growth over the next 2 years predicted to come from tight rock plays in North Dakota and Texas, the fluid-pulse technology is uniquely suited to this type of tight formation, as well as being effective under many other challenging conditions. A downhole tool works with conventional surface equipment and is installed into injection wells to transform the normally steady rate of injection to a pulsating injection stream with typically 10 or more pulses per minute (Figs. 1a, 1b, and 1c). Similar to the idea of kinking a garden hose, precise amounts of energy are repeatedly built up and released by the tool. The pulses add acceleration and momentum to the injected fluid, forcing it into the reservoirs’ nooks and crannies and more impermeable rock at speeds of up to 100 m/s. This enables the injection fluid to enter pore spaces that have remained untouched. The result is a much better sweep of the oil toward the surrounding producing wells. Case Studies A small independent operator in Alberta implemented the technology with six tools in the relatively tight Viking formation in December 2010. This is a mature waterflood in sandstone with average porosity of approximately 9% and permeability ranging from 0 to 50 md. In this light oil project, production increased from the offset producers by 69 BOPD, or 52% above the base decline trend. 

Publisher

Society of Petroleum Engineers (SPE)

Subject

Strategy and Management,Energy Engineering and Power Technology,Industrial relations,Fuel Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3