Influence of Transport Conditions on Optimal Injection Rate for Acid Jetting in Carbonate Reservoirs

Author:

Ridner Dmitry1,Frick Taylor1,Zhu Ding1,Hill Alfred Daniel1,Angeles Renzo2,Vishnumolakala Narendra2,Shuchart Chris3

Affiliation:

1. Texas A&M University

2. ExxonMobil Upstream Research Company

3. ExxonMobil Development Company

Abstract

Summary Acid jetting occurs as a result of pumping acid through limited-entry liner completions, causing high-velocity streams to impinge against the wellbore wall. The dissolution effect of jetting differs significantly from conventional matrix acidizing. Acid jetting causes cavities to be formed at the points of contact of the jet with the rock, with wormholes forming beyond the cavity. Jetting has been shown to be an effective technique for placing acid along extended-reach laterals, removing filter cake, and enhancing wormhole propagation. The velocity of the impinging jet and its standoff distance from the rock cause some of the acid to penetrate the formation and some to flow back in the annular space of the liner. Two types of dissolution mechanisms occur: surface dissolution forming the cavity and matrix dissolution forming the wormholes. These dissolution mechanisms are highly dependent on the acid-injection rate, velocity of the jet, temperature, and permeability of the formation. The differences between the matrix dissolution mechanism of acid jetting and that of conventional matrix acidizing are most obvious at low acid-injection rates. Experiments were performed with the intention of quantifying the difference in pore volume (PV) to breakthrough between acid jetting and matrix acidizing, as well as determining the effect of increased temperature, rock permeability, and acid concentration on this value with respect to the acid-injection rate. The baseline parameters of room temperature, 15% hydrochloric (HCl) acid, and 2- to 4-md Indiana limestone were individually compared with experiments run at 180°F, 28% HCl, and Indiana limestone cores of 30, 60, and 140 md. The effect of jetting velocity was also investigated. A direct comparison with conventional matrix acidizing was made by eliminating the jetting effect of the stream through mechanical dispersion. Acid jetting creates a point of heightened interstitial velocity at the contact of the acid and the rock, causing wormhole propagation to occur at a faster rate than it would in conventional matrix acidizing at that injection rate. This effect is especially pronounced as the jetting velocity is increased above that of matrix acidizing, and it tapers off at progressively higher jetting velocities.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3