Numerical Studies on the Geomechanical Stability of Hydrate-Bearing Sediments

Author:

Rutqvist Jonny1,Moridis George J.1

Affiliation:

1. Lawrence Berkeley National Laboratory

Abstract

Summary The thermal and mechanical loading of oceanic hydrate-bearing sediments (HBS) can result in hydrate dissociation and a significant pressure increase with potentially adverse consequences on the integrity and stability of the wellbore assembly, the HBS, and the bounding formations. The perception of HBS instability, coupled with insufficient knowledge of their geomechanical behavior and the absence of predictive capabilities, has resulted in a strategy of avoidance of HBS when locating offshore production platforms and can impede the development of hydrate deposits as gas resources. In this study, we investigate coupled (interacting) hydraulic, thermodynamic, and geomechanical behavior of oceanic HBS in three cases. The first involves hydrate heating as warm fluids from deeper conventional reservoirs ascend to the ocean floor through uninsulated pipes intersecting the HBS. The second case describes system response during gas production from a hydrate deposit, and the third involves mechanical loading caused by the weight of structures placed on the ocean floor overlying the HBS. For the analysis of the geomechanical stability of HBS, we developed and used a numerical simulator that integrates a commercial geomechanical simulator and a simulator describing the coupled processes of fluid flow, heat transport, and thermodynam-ic behavior in the HBS. Our simulation results indicate that the stability of HBS in the vicinity of warm pipes may be affected significantly. Gas production from oceanic deposits may also affect the geomechanical stability of HBS under the conditions that are deemed desirable for production. Conversely, the increased pressure caused by the weight of structures on the ocean floor increases the stability of underlying hydrates.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3