Optimizing Coiled Tubing Extended Reach Operations with Real Time Simulations

Author:

Larrondo Adrian1,Ranieri Juan Pablo1,Marozzini Diego Alejandro1

Affiliation:

1. Baker Hughes, a GE Company

Abstract

Abstract With the objective of increasing productivity and achieving an economically sustainable development of the non-conventional reservoirs in Argentina, the oil and gas (O&G) energy companies are focused on drilling horizontal wells with lateral extensions between 2500 m (8,200 ft) to 3000 m (9,840 ft) in length. In order to produce commercial volumes of hydrocarbons, it is mandatory to fracture-stimulate multiple zones. The "plug and perf" method continues to be the most common completion technique in the field. Once the stimulation is completed, a coiled tubing (CT) milling operation is undertaken to remove the frac plugs. Critical to achieving a successful operation is reaching total depth (TD) in the well with the coiled tubing. The precise determination of the operational coefficient of friction (CoF) between the coiled tubing string and the production casing, could be the difference between failure and success, affecting both the technical and economical results of the project. The goal of this paper is to share the lessons learned after more than forty extended reach operations and the experience earned on the utilization of real time simulations to define both, the tensile load exerted for an extended reach tool and the coefficient of friction found during coiled tubing operations. Also demonstrate, by analyzing real life applications, how the implementation of this technology and new working methodology, allows to anticipate deviations with respect to the "normal" values of friction, achieve a better understanding of the influence of solids in the completion to the coefficient of friction and obtain a more efficient use of the metal-metal lubricant utilized during the milling operations.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3