Recovery of Oil from High Salinity Reservoir Using Chemical Flooding: From Laboratory to Field Tests

Author:

Shiau Ben1,Hsu Tzu-Ping1,Lohateeraparp Prapas1,Rojas Mario1,Budhathoki Mahesh1,Raj Ajay1,Wan Wei1,Bang Sangho1,Harwell Jeffrey H.1

Affiliation:

1. University of Oklahoma

Abstract

Abstract Reservoirs containing very high total dissolved solids and high hardness make the design of a surfactant polymer (SP) flood extremely difficult because surfactant tends to precipitate and separate under these conditions. Beside divalent ions, Ca2+, Mg2+, presence of iron in the brine can be a challenging issue. Different surfactant formulations are evaluated and incorporate cosurfactants and co-solvents which minimize viscous macroemulsions, promote rapid coalescence under Winsor Type III conditions, and stabilize the chemical solution by reducing precipitation and phase separation. The optimal surfactant formulations were further evaluated in one-dimensional sand packs and coreflood tests using Berea sandstone, reservoir oils, and brines at reservoir temperatures. Using similar injection protocols, 3 pore volumes of surfactant-only system, experimental results show the oil recovery ranging from 45 % to 70% of the residual oil (Sor) after water flooding. The level of surfactant loading is less than 0.5 wt%. A single-well test was conducted to confirm laboratory results in situ in the presence of high-salinity formation water containing 102,300 mg/L total dissolved solids (TDS). The aim of ongoing test is to confirm the effectiveness of the high-salinity surfactant-only formulation (0.46 wt% of surfactant). In this effort, we plan to conduct multiple single-well tests at different wells to minimize the design risks involved for the surfactant pilot test. A pilot test at a sandstone reservoir is scheduled to be performed in July of 2013 to further evaluate the effectiveness of surfactant formulation and address technical issues related to scale-up.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3