How Effective Is Carbon Dioxide as an Alternative Fracturing Fluid?

Author:

Li Sanbai1,Zhang Dongxiao2

Affiliation:

1. Northeastern University, China

2. Peking University

Abstract

Summary Massive hydraulic fracturing requires an enormous consumption of water and introduces many potential environmental issues. In addition, water-based fluid tends to be trapped in formations, reducing oil/gas-phase relative permeability, and causes clay-mineral swelling, which lowers absolute permeability. Carbon dioxide (CO2) is seen as a promising alternative working fluid that poses no formation-damage risk, and it can stimulate more-complex and extensive fracture networks. However, very little, if any, extant research has quantitatively analyzed the effectiveness of CO2 fracturing, except for some qualitative fracturing experiments that are based on acoustic emissions. In this study, we systematically examine water and CO2 fracturing, and compare their performance on the basis of a rigorously coupled geomechanics and a fluid-heat-flow model. Parameters investigated include fluid viscosity, compressibility, in-situ stress, and rock permeability, illustrating how they affect breakdown pressure (BP) and leakoff, as well as fracturing effectiveness. It is found that (1) CO2 has the potential to lower BP, benefiting the propagation of fractures; (2) water fracturing tends to create wider and longer tensile fractures compared with CO2 fracturing, thereby facilitating proppant transport and placement; (3) CO2 fracturing could dramatically enhance the complexity of artificial fracture networks even under high-stress-anisotropy conditions; (4) thickened CO2 tends to generate simpler fracture networks than does supercritical CO2 (SC-CO2), but still more-complex fracture networks than fresh water; and (5) the alternative fracturing scheme (i.e., SC-CO2 fracturing followed by thickened-CO2 fracturing) can readily create complex fracture networks and carry proppant to keep hydraulic fractures open. This study reveals that, for intact reservoirs, water-based fracturing can achieve better fracturing performance than CO2 fracturing; however, for naturally fractured reservoirs, CO2 fracturing can constitute an effective way to stimulate tight/shale oil/gas reservoirs, thereby improving oil/gas production.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3