A Study of Proppant Transport With Fluid Flow in a Hydraulic Fracture

Author:

Blyton Christopher A.1,Gala Deepen P.1,Sharma Mukul M.1

Affiliation:

1. University of Texas at Austin

Abstract

Summary The effective placement of proppant in a fracture has a dominant effect on well productivity. Existing hydraulic-fracture models simplify proppant-transport calculations to varying degrees. A common assumption applied is that the average proppant velocity caused by flow is equal to the average carrier-fluid velocity, while the settling-velocity calculation uses Stokes’ law. To more accurately determine the placement of proppant in a fracture, it is necessary to account for many effects not included in previous assumptions. In this study, the motion of particles flowing with a fluid between fracture walls is simulated with a coupled computational-fluid-dynamics/discrete-element method (CFD/DEM) code that uses both particle dynamics and CFD calculations to account for both particles and fluid. These simulations (presented in metric units) determine individual particle trajectories as particle-to-particle and particle-to-wall collisions occur, and include the effect of fluid flow. The results show that the ratio of proppant diameter to fracture width governs the relative average velocity of proppant and fluid. A proppant-transport model developed from the results of the direct numerical simulations and existing correlations for particle-settling velocity has been incorporated into a fully 3D hydraulic-fracturing simulator. This simulator couples fracture geomechanics with fluid-flow and proppant-transport considerations to enable the fracture geometry and proppant distribution in the main hydraulic fracture to be determined. For two typical shale-reservoir cases, the proppant placement and width distribution have been determined, allowing comparison at the hydraulic-fracture scale, including effects observed at the particle scale. This allows for optimization of the treatment to a specific application, and the results are presented in oilfield units, considered more familiar to our readers.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Mechanical Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3