The Effect of Slant Hole, Drainhole, and Lateral Hole Drilling on Well Productivity

Author:

Roemershauser Alvin E.1,Hawkins Murray F.1

Affiliation:

1. Louisiana State U.

Abstract

Introduction Methods have been developed for drilling (a) slant holes and (b) one or more curved holes from a common central hole in producing formations. These wells will have productivities exceeding that of a single hole drilled normal to and fully penetrating the producing stratum. other factors being equal. This increase is due to the decrease in resistance to flow in the vicinity of the wellbore by an increase in the cross section exposed to flow with increasing footage drilled in the formation and due to the geometrical arrangement of the holes with respect to the drainage radius or boundary. Where other factors are not equal, for example, where zonal damage exists in the single, fully penetrating hole but not in the slant or curved holes, additional increases in productivity will accrue. Many of these wells have been drilled in the past and are currently being drilled with various results reported. While the authors are aware of some of the practical aspects of drilling and completing these multiple. curved holes, it is their hope to provide some basic data on the improvement in productivity to be anticipated in these wells for a number of hole arrangements or patterns. Model Studies Electric analogue or model studies have been used for solving some reservoir fluid flow problems in which the mathematical solutions are unknown, too approximate or too complex. For example, recent studies have used this method to determine the effect of shot density, diameter, and depth of penetration of gun perforations on well productivity. The success of these studies depends upon the analogy between Ohm's Law for electrical flow and Darcy's Law for incompressible fluid flow in homogeneous rock. Where a geometrical scale reduction is desired, a single scale factor is applied to all dimensions.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Strategy and Management,Energy Engineering and Power Technology,Industrial relations,Fuel Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mine Water Inrush Prediction based on Virtual Large Diameter Well Method;IOP Conference Series: Earth and Environmental Science;2019-07-01

2. 7. Bibliography;Developments in Petroleum Science;1989

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3