Methodology to Remediate and Evaluate Surface Flowline Capacity with Coiled Tubing Cleanouts

Author:

Hassig Fonseca Santiago1,Serrano Dayana2,Villacres Cristina2,Flor David2,Marchan Luis2,Bravo Luciano2,Pineda Alexander3,Muslera Eduardo3,Estevez Diego3,Ramos Geovanny4,Chicango Edgar4,Cattani Marcelo4,Morillo German5,Alabuela Luis5,Correa Edgar5,Freire Carola5

Affiliation:

1. Schlumberger (Corresponding author)

2. Schlumberger

3. Tecpetrol

4. Consorcio Shushufindi

5. Petroecuador

Abstract

Summary Customers in Ecuador inject the byproduct formation water from production wells into injector wells. A limited injection rate bottlenecks production, which is economically undesirable. Two major contributors limit injection capacity: reservoir injectivity and flowline pressure losses. In the latter case, paraffins, asphaltenes, and scale, collectively referred to as “schmoo,” progressively build in the flowline and reduce the internal diameter (ID), limiting flow rate capacity. One cost-effective method to remediate flowlines with significant deposits is coiled tubing (CT) cleanouts. This unconventional method, which calls for optimized planning, execution, and performance evaluation, has been implemented in five flowlines. An economic analysis shows that remediating flowlines using CT cleanout yields significant savings as compared with replacement. After a candidate is identified, job planning takes into consideration flowline length and deviation (to identify maximum reach of CT), schmoo analysis (to design an optimal bottomhole assembly and fluid treatment), and execution logistics (to ensure a viable, reliable, and safe operation). After the cleanout, the flowline is put back into service, and the effectiveness of the treatment is estimated based on system flow rates and pressure losses. The equivalent ID for the flowlines was improved by more than 49% in each of the remediated flowlines, achieving an effectiveness of more than 89% of nominal ID and increasing flow rates without a detrimental effect on system pressure. The cleanouts reestablished nominal capacity in more than 50,000 ft of flowline that no longer needed replacement. Lessons learned include the ability to complete the cleanout with water alone. The chemical analysis in planning stages showed the absence of carbonates, which enabled a mechanical cleanout with a high-pressure nozzle. Nonetheless, a chemical treatment was designed as a contingency. Another learning was that though tubing force models helped predict the reach of the CT, other factors created limitations. For example, the weld bead on the flowline limited the reach of the CT and required reevaluating where to create cuts along the flowline. Finally, deploying the CT in a flowline required configuring the injector head horizontally, which required a customized base for safe rig-up and operation of the injector head and pressure-control equipment (PCE). CT successfully cleaned out five flowlines with IDs ranging from 6 to 8 in. and reestablished 89 to 98% of their nominal ID. As a result, the operator saved upward of USD 14 million in flowline replacement costs, increased asset usage, and decreased deferred injection. Historically, there is limited documented experience with flowline cleanouts using CT. The paper documents a repeatable methodology for candidate selection, planning, execution, and performance evaluation. It also provides basic building blocks to meet treatment design, rig-up, and execution requirements that are unique to this application.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3