Modeling the Interfering Effects of Gas Condensate and Geological Heterogeneities on Transient Pressure Response

Author:

Hamdi H..,Jamiolahmady M..,Corbett P.W.M.. W.M.

Abstract

Summary Numerous publications have investigated the effect of gas condensate fluid on the transient pressure well-test (WT) response. However, to the best of our knowledge, its combined effect with geology has rarely been studied. Our findings in the present report demonstrate that geology can complicate the WT response and make it difficult for interpretation. In this study, the impact of geological heterogeneities on the WT response of a commingled braided fluvial gas condensate reservoir has been investigated. Numerical WT data were generated for a single-well model with a commercial compositional reservoir simulator. Several sensitivity simulations were performed to explore the effects of correlation length, vertical permeability, production rate, and drawdown time on the pseudopressure-derivative curves. The WT weighting kernel function and the calculated well-pressure sensitivity coefficients were implemented to demonstrate different trends of drawdown and buildup responses encountered in this study. The results clarified the idea that some geological heterogeneities and production parameters can alter pressure distribution and condensate saturation and mask the native model WT signatures. In this exercise, it was demonstrated that ramp effect, a geologically complex phenomenon in high-net/gross commingled reservoirs, is affected by the condensate formation. This interfering phenomenon is reflected on the derivative curves and is magnified in the presence of the shorter correlation lengths, the lower vertical communications, and the higher production rates. We also examined the stepwise stripping of the reservoir heterogeneity, demonstrating the significant impact of some facies on the buildup and drawdown transient pressure response. The time-dependent sensitivity coefficients were calculated to show that the drawdown test is sensitive to effective permeability in near-wellbore regions, in which condensate is prone to build up with time. In the buildup, on the other hand, the condensate saturation is almost invariant with time and affects the early-time region. This work leads toward better understanding of the influence of geology in gas condensate WT interpretation of fluvial reservoirs.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3