A Novel Phase Transition Loss Circulation Solution for Severe Losses Scenario: Case Histories from Middle East and Africa

Author:

Addagalla Ajay Kumar1,Jadhav Prakash1,Yadav Prahlad1,Sarmah Pranjal1,Maley Iain1,Anerao Anup1

Affiliation:

1. Baker Hughes

Abstract

Abstract Lost circulation is a major contributor to non-productive time (NPT). Any efforts to better understand the factors that lead to it and subsequently identify a suitable cure will translate to tremendous savings of time and money for operators. Conventional materials such as calcium carbonate, nut shells, graphites and fibers are successful in curing many cases of seepage and partial lost circulation. However, there is a practical limit to the concentration of these materials used to combat the most severe losses due to the limitation of pumps and drilling assembly. In porous formations, high fluid loss squeeze pills have seen some success in reducing losses by forming a high compressive strength plug, but these pills do not have a good success rate in large fractures or vugular formations. Such challenges are better addressed by cross-linking pills, but even this solution does not always have a high success rate due to the low compressive strength of the formed plug. The new phase-transforming loss circulation material (PTLCM) was designed to be pumped easily and achieve thixotropic behaviour under downhole conditions, resisting losses in the thief zone prior to setting as a rigid plug with high compressive strength. A setting-control additive ensures the LCM does not prematurely set. The additive is used at a concentration calculated by considering the time required for pumping and the bottom hole temperature (BHT) in the thief zone. After the LCM sets, a high compressive strength solid plug is formed that can resist fluid loss to the formation. The LCM has a high acid solubility of ~95%, making this system a viable option for deploying in reservoir sections, depending on the client requirement and well conditions. This paper describes two recent successful applications deploying this novel technology. Case Study #1: While drilling in sandstone, the well experienced total losses, which presented an immediate challenge to maintain hydrostatic pressure. The operator responded by pumping several conventional pills loaded with a broad particle size range of fibers, granules and polymers. These pills were unsuccessful at healing the losses, so the operator opted to deploy the new technology LCM. The losses were cured successfully with a single application. Case study #2: Wells drilled in the Western Desert have traditionally experienced severe to total losses while drilling fractured dolomite. Frequently, such events have been difficult to cure by conventional means. The only solution has been multiple applications of cement plugs to heal the losses. This case study describes a well with dynamic losses of more than 150 bbl/hr that were healed by spotting one pill through the circulating sub across the thief zone. The losses were successfully cured, allowing the operator to continue drilling.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3