Maximum Permissible Dog-Legs in Rotary Boreholes

Author:

Lubinski Arthur1

Affiliation:

1. Pan American Petroleum Corp.

Abstract

Abstract In drilling operations, attention generally is given to hole angles rather than to changes of angle, in spite of the fact that the latter are responsible for drilling and production troubles. The paper presents means for specifying maximum permissible changes of hole angle to insure a trouble-free hole, using a minimum amount of surveys. It is expected that the paper will result in a decrease of drilling costs, not only by avoiding troubles, but also by removing the fear of such troubles. Summary, Conclusions, and Recommendations Excessive dog-legs result in such troubles as fatigue failures of drill pipe, fatigue failures of drill-collar connections, worn tool joints and drill pipe, key seats, grooved casing, etc. Most of these detrimental effects greatly increase with the amount of tension to which drill pipe is subjected in the dog-leg. Therefore, the closer a dog-leg is to the total anticipated depth, the greater becomes its acceptable severity. Very large collar-to-hole clearances will cause fatigue of drill-collar connections and shorten their life, even in very mild dog-legs. Another finding regarding fatiguing of collar connections in dog-legs is that rotating with the bit off bottom sometimes may be worse than drilling with the full weight of drill collars on the bit, mainly in highly inclined holes when the inclination decreases with depth in the dog-leg. Means are given for specifying maximum dog-legs compatible with trouble-free holes. An inexpensive technique proposed is to take inclinometer or directional surveys far apart; then, if an excessive dog-leg is detected in some interval, intermediate close-spaced surveys are run in this interval. The application of the findings should result in a decrease of drilling costs, not only by avoiding troubles, but mainly by removing the fear of such troubles. The result would be much more frequent drilling with heavy weights on bit, regardless of hole deviation.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Strategy and Management,Energy Engineering and Power Technology,Industrial relations,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3