Bhagyam Full Field Polymer Flood: Implementation and Initial Production Response

Author:

Koduru Nitish1,Choudhury Nandini Nag1,Kumar Vineet1,Prasad Dhruva1,Raj Rahul1,Barua Debaditya1,Singh Aditya Kumar1,Jain Shakti1,Gupta Abhishek Kumar1,Pandey Amitabh1

Affiliation:

1. Cairn Oil & Gas, Vedanta Limited

Abstract

Abstract Bhagyam is an onshore field in the Barmer basin, located in the state of Rajasthan in Western India. Fatehgarh Formation is the main producing unit, comprising of multi-storied fluvial sandstones. Reservoir quality is excellent with permeability in the range of 1 to 10 Darcy and porosity in the range of 25-30%. The crude is moderately viscous (15 – 500 cP) having a large variation with depth (15 cP – 50 cP from around 270 m TVDSS to 400 m TVDSS and then rising steeply to 500 cp at the OWC of 448m TVDSS). Lab studies on Bhagyam cores show that the reservoir is primarily oil wet in nature. Bhagyam Field was developed initially with edge water injection and with subsequent infill campaigns, prior to polymer flood development plan implementation, the Field was operating with 162 wells. Simple mobility ratio and fractional flow considerations indicate that improving the mobility ratio (water flood end-point mobility ratio is 30-100) in Bhagyam would substantially improve the sweep efficiency. Early EOR screening studies recommended chemical EOR (polymer and ASP flood) as the most suitable method for maximizing oil recovery. The lab studies further demonstrated good recovery potential for Polymer flood. Bhagyam's first Polymer flood field application started with testing in one injector which was later expanded to 8 wells. Extended polymer injection in these wells continued for four years. Observing a very encouraging field response, field scale polymer expansion plan was designed which included drilling of 28 new infill wells (17 P+ 11 I) and 24 producer-to-injector conversions. Modular skid-based polymer preparation units were installed to meet the injection requirements of the expansion plan. Infill producers were brought online in 2018 as per the plan but polymer injection was delayed due to various external factors. The production rate, however, was sustained without significant decline, aided by continuous polymer injection in initial 8 injectors, continuing water flood and good reservoir management practices. First polymer injection in field scale expansion started in Oct’20 and was quickly ramped up to the planned 80000 BPD in 4 months, supported by analyses of surveillance data, indicating very encouraging initial production response. Laboratory quality check program was designed to check quality of polymer during preparation and to ensure viscosity integrity till the well head. The paper discusses modular polymer preparation unit set-up and the additional installations designed to reduce pipeline vibrations during pumping of polymers., Experience gained while bringing online the polymer injection wells and the lab quality checks employed to ensure good polymer quality during preparation and pumping have also been discussed. The paper also discusses reservoir surveillance program adopted at the start of polymer injection like spinner survey, Pressure fall-off surveys and the stimulation activities that worked in improving the injectivity of polymer injectors. The paper further outlines the observations from the production response and the surveillance data collected to ensure good polymer flow in this multi-darcy reservoir.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3