Preformed-Particle-Gel Transport Through Open Fractures and Its Effect on Water Flow

Author:

Zhang Hao1,Bai Baojun1

Affiliation:

1. Missouri University of Science and Technology

Abstract

Summary This work constructed transparent fracture models to visually track swollen preformed-particle-gel (PPG) propagation through open fractures and water flow through PPG placed in the fractures. During injection, PPG propagated like a piston along a fracture and a gel pack was formed in the fracture. When water broke through the particle-gel pack after PPG placement, several channels were created that discharged water from the outlet while water was being injected. Investigation of factors that influence PPG injectivity and plugging efficiency revealed that PPG injectivity increases with fracture widths and flow rates but decreases with brine concentrations (on which the PPG swelling ratio depends). PPG can reduce the permeability for the fractures with different widths to the same level. Full-factorial experimental design analysis was performed to rank the influence of injection rate, fracture width, and PPG swelling ratio on pressure response, resistance factors, and injectivity.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3