Advanced Upscaling for Kashagan Reservoir Modeling

Author:

Panfili P..1,Cominelli A..1,Calabrese M..1,Albertini C..1,Savitskiy A..1,Leoni G..1

Affiliation:

1. Eni

Abstract

Summary The Kashagan field is a huge carbonate formation located 4.5 km below the bottom of the North Caspian sea. The reservoir is saturated by overpressured light oil, and the development is based on first-contact-miscible gas injection. The reservoir is highly stratified, with a fine sequence of depositional cycles and long-range lateral correlations. Three porosity systems (matrix, karst, and fractures) can be organized in two main environments: a massive, low-permeability, matrix-like inner platform and a highly fractured/karstified rim. The reservoir geology is modeled by means of detailed geological grids consisting of tens of millions of cells, with vertical spacing of 1 m or even less to account for high-order depositional cycles. Geological grid cannot be used to run compositional simulations, and much-coarser grids, in which hundreds of geological layers are lumped in few tens of dynamic layers, are used by reservoir engineers. To minimize coarse-scale errors, an average lateral spacing of 250×250 m is used for both simulation and geological grid; nonetheless, upscaling remains a challenge. Traditional permeability (k*) upscaling methods, including flow-based methods, overestimate Kashagan field/wells production and injection potentials. We implemented a method in which the outcome of the upscaling is effective transmissibility (T*) instead of k*. T* upscaling has been proposed in the past as an alternative to k* upscaling, but it is neither part of commercial workflows nor widely accepted in the reservoir-modeling community. In our T* upscaling, the solution of local flow problems around coarse-cell interfaces is used to compute coarse transmissibility. T* and k* upscaling were compared by simulating both single-phase and gas-injection problems, including platform and rim, using the results of fine-scale simulation as a reference. We considered (1) single-porosity simulations with geological grid populated by only matrix (first medium) and karst+fracture (second medium) properties and (2) dual-porosity/ dual-permeability simulations encompassing both media. Contrary to k* upscaling, T*-based coarse simulations perfectly replicate fine-scale field and well injection/production potentials. Using T* upscaling as a cornerstone for company activities on Kashagan, we can run coarse-scale full-field simulations in a few hours without loss of consistency with the results provided by weeks-long, often unpractical, fine-scale simulations. On the contrary, the inaccuracy of k* upscaling would have required much finer and more computationally-expensive simulation grids together with the implementation of ad hoc multiphase upscaling.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3