Affiliation:
1. Department of Petroleum Engineering, Amirkabir University of Technology
2. Department of Petroleum Engineering, Amirkabir University of Technology (Corresponding author)
3. Earth Sciences Department, Faculty of Natural Science, University of Tabriz
Abstract
Summary
The lateral and vertical variations in porosity significantly impact the reservoir quality and the volumetric calculations in heterogeneous reservoirs. With a case study from Iran’s Zagros Basin Sarvak reservoir in the Dezful Embayment, this paper aims to demonstrate an efficient methodology for distributing porosity. Four facies models (based on electrofacies analysis data and seismic facies) with different geostatistical algorithms were used to examine the effect of different facies types on porosity propagation. Both deterministic and stochastic methods are adopted to check the impact of geostatistical algorithms on porosity modeling in the static model. A total of 40 scenarios were run and validated for porosity distribution through a blind test procedure to check the reliability of the models. The study’s findings revealed high correlation values in the blind test data for all porosity realizations linked to seismic facies, ranging from 0.778 to 0.876. In addition, co-kriging to acoustic impedance (AI), as a secondary variable, increases the correlation coefficient in all related cases. Unlike deterministic algorithms, using stochastic methods reduces the uncertainty and causes the porosity model to have an identical histogram compared with the original data. This study introduced a comprehensive workflow for porosity distribution in the studied carbonate Sarvak reservoir, considering the electrofacies, and seismic facies, and applying different geostatistical algorithms. As a result, based on this workflow, simultaneously linking the porosity distribution to seismic facies, co-kriging to AI, and applying the sequential Gaussian simulation (SGS) algorithm result in the best spatial modeling of porosity.
Publisher
Society of Petroleum Engineers (SPE)
Subject
Geology,Energy Engineering and Power Technology,Fuel Technology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献