Visual Investigation of Oil Recovery by Low Salinity Water Injection: Formation of Water Micro-Dispersions and Wettability Alteration

Author:

Emadi Alireza1,Sohrabi Mehran1

Affiliation:

1. Centre for Enhanced Oil Recovery and CO2 Solutions, Institute of Petroleum Engineering, Heriot-Watt University

Abstract

Abstract Low salinity waterflood (LSW) is a relatively new enhanced oil recovery (EOR) technique which has been reported to improve oil recovery in several laboratory experiments and some field trials. The general assumption among researchers is that LSW shifts wettability towards a more favourable state for oil recovery. Several hypotheses have been introduced in the literature as possible mechanisms involved in oil recovery by LSW e.g. fine migration and flow diversion, multi-component ion exchange (MIE), and rise in pH. However, a consistent theory to explain the process of wettability modification has not yet emerged. This paper presents the results of a comprehensive set of direct visualization (micromodel) experiments which investigate the low salinity effect (LSE) from a novel perspective. The visualization study, using reservoir-condition micromodels, shows that when low salinity brine comes in contact with certain crude oils, a large number of water micro-dispersions form at the oil/water interface within the oil phase. The formation and precipitation of these micro-dispersions can only be seen under high magnifications using our imaging system specifically designed for thin micromodels. The water micro-dispersions do not form when the oil is in contact with a high salinity brine and when they form due to low salinity of the brine, they coalescence as soon as the oil comes in contact with a high salinity brine. In our micromodel tests, when a mixed-wet micromodel and high salinity connate water were utilized, the formation of these micro-dispersions was associated with a slight change in the wettability and redistribution of fluids. We hypothesize that formation of the micro-dispersions results in additional oil recovery through two separate mechanisms; (1) depletion of the oil/water interface from natural surface active materials, resulting in wettability alteration and, (2) swelling of droplets of high salinity connate water. The results of this study introduce water/oil interactions and formation of water micro-dispersions as a potential mechanism for wettability alteration and improved oil recovery in low salinity water injection.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3