Research on the Effects of an Electrode Drill Bit during the Rock Drilling Process by High-Voltage Electric Pulse

Author:

Duan Longchen1,Liu Xianao2,Li Changping3ORCID,Kang Jifeng2,Zhang Di4,Yuan Zhong4

Affiliation:

1. Faculty of Engineering, China University of Geosciences, Wuhan; National Center for International Research on Deep Earth Drilling and Resource Development, China University of Geosciences, Wuhan

2. Faculty of Engineering, China University of Geosciences, Wuhan

3. School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan (Corresponding author)

4. School of Future Technology, China University of Geosciences, Wuhan

Abstract

Summary High-voltage electric pulse rock-breaking (HVEPB) has proved to be a novel and inexpensive method of breaking rock regardless of rock composition, but the design of the electrode drill bit lacks a theoretical basis. In this paper, we first establish a plasma channel model for electric breakdown and a numerical rock-breaking model for HVEPB, which can simulate the rock electrical breakdown plasma channel and the effect of different electrode drill bits on HVEPB. Second, we analyze the effects of different electrode arrangement structures and high-voltage electrode angles on plasma channels and the effects of internal cracks and rock-breaking processes through numerical simulation. Finally, we describe HVEPB experiments conducted using electrode drill bits with different electrode arrangement structures and high-voltage electrode angles, and with the boreholes reconstructed in three dimensions to analyze the effects of different electrode arrangement structures and high-voltage electrode angles on HVEPB drilling. The results show that the effects of the electrode drill bits on HVEPB are reflected mainly in the difference between the plasma channel and shock wave. Different electrode arrangement structures and high-voltage electrode angles result in different electric fields and energy utilization efficiencies within the rock, resulting in different shock waves and differences in the depth, shapes, and penetration of the plasma channels. The simulations and experimental studies in this paper can guide and optimize the design of the discharge tool to upgrade the drilling efficiency of HVEPB.

Publisher

Society of Petroleum Engineers (SPE)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3