Assisted History Matching and Uncertainty Analysis Workflow for a Large Oilfield in Middle East

Author:

Ismail Ahmed1,Hazem Yasser1,Al Obaidi Mazna Naji1,Bogachev Kirill2,Gusarov Evgenii2,Shelepov Konstantin2,Kuzevanov Maksim2

Affiliation:

1. ADNOC ONSHORE

2. Rock Flow Dynamics

Abstract

Abstract This paper proposes an assisted history matching (AHM) and uncertainty analysis workflow that was applied to facilitate the history matching of a giant carbonate reservoir in Middle East. The objective was to identify and quantify reservoir uncertainties and assess their impact on the field performance. In addition, to create a sufficient number of realizations to allow combinations of all uncertainties to capture a combined effect. A real field case is represented by a consistent workflow that iteratively updates the ranges and number of reservoir uncertainties constrained by the actual measurements. The process has the following steps: definition of global uncertainty, sensitivity analysis, exclusion of less influential parameters, experimental design, revision of uncertainty matrix, and run optimization algorithms. The approach was firstly implemented at a global level and then continued to a regional level. The primary objective function is consisted of oil and water production mismatches, and the plan is to upgrade the objective function to include more parameters for further model HM enhancements. Initially, the workflow was based on five uncertainty parameters. Ten sensitivity analysis cases were performed and tornado chart analysis suggested excluding some parameters that have less impact on the match quality, hence the objective function. Next, experimental design using Latin Hypercube was performed which allows seeing a combined effect of uncertainty parameters. During several experimental design iterations, the uncertainty parameter matrix was revised and a total number of uncertainty parameters was increased from 5 to 17. Finally, a total number of 260 experimental cases were completed, however, no good history match case was obtained. Therefore, a transition from the global level to a regional level was performed. The most sensitive identified uncertainties at global level were absolute permeability, vertical permeability anisotropy, pore volume and fault transmissibility. At the regional level, additional permeability multipliers for well regions were added to the uncertainty matrix. After that, a good quality matched cases were obtained. Field scale and complexity were the main drive to implement AHM workflow. In a giant carbonate reservoir with long history and complex geology, a classical history matching method with unique solution cannot assure an accurate model predictability. The key advantages of this approach were the facilitating of the HM process and reducing of the total calculation time.

Publisher

SPE

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3