Affiliation:
1. InPetro Technologies (currently with University of North Dakota)
2. Texas A&M University at Qatar
3. InPetro Technologies
Abstract
Summary
Widely distributed organic-rich shales are being considered as one of the important carbon-storage targets, owing to three differentiators compared with conventional reservoirs and saline aquifers: (1) trapping of a significant amount of carbon dioxide (CO2) permanently; (2) kerogen-rich shale's higher affinity of CO2; and (3) existing well and pipeline infrastructure, especially that in the vicinity of existing power or chemical plants. The incapability to model capillarity with the consideration of imperative pore-size-distribution (PSD) characteristics by use of commercial software may lead to inaccurate modeling of CO2 injection in organic shale. We develop a novel approach to examine how PSD would alter phase and flow behavior under nanopore confinements. We incorporate adsorption behavior with a local density-optimization algorithm designed for multicomponent interactions to adsorption sites for a full spectrum of reservoir pressures of interests. This feature elevates the limitation of the Langmuir isotherm model, allowing us to understand the storage and sieving capabilities for a CO2/N2 flue-gas system with remaining reservoir fluids. Taking PSD data of Bakken shale, we perform a core-scale simulation study of CO2/N2 flue-gas injection and reveal the differences between CO2 injection/storage in organic shales and conventional rocks on the basis of numerical modeling.
Publisher
Society of Petroleum Engineers (SPE)
Subject
Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献