Insights into Heavy Oil Recovery by Surfactant, Polymer and ASP Flooding

Author:

Bryan J..1,Shamekhi H..2,Su S..3,Kantzas A..1

Affiliation:

1. University of Calgary

2. Equinox Engineering Ltd.

3. University of Regina

Abstract

Abstract At the end of primary production in heavy oil reservoirs, significant volumes of continuous oil remain in place. As production rates decline this EOR target has tremendous value for heavy oil producers. Many of these reservoirs are poor candidates for thermal recovery. Furthermore in regional sands or post-CHOPS systems, it may not be easy to pressurize these reservoirs for solvent-based recovery. Chemical flooding has potential for EOR in these systems, because the injection of chemicals can lead to the buildup of pressure gradients between injectors and producers, at least at the laboratory scale. These pressure gradients evolve due to improved viscosity of polymer solutions, the formation of emulsions in surfactant or AS floods, or both. The objective of this work is to improve our understanding of the mechanisms by which heavy oils are produced through chemical flooding. Linear core floods were run on systems containing two heavy oils of variable viscosity: 500 mPa•s and 16,000 mPa•s. For the lower viscosity oil polymer floods and ASP floods are compared. These tests illustrate the impact of improving the injection fluid viscosity vs. the additional benefit from the addition of surfactant. It was observed that heavy oil is produced more efficiently from ASP flooding compared to polymer flooding alone. The residual oil saturations are lower in ASP floods, even with lower differential pressure across the core. For the higher viscosity oil some production was achieved through AS flooding alone, but the addition of polymer was important for improving recovery. Tests were also run on a parallel core system, containing cores of relatively high and low permeability. This was a representation of a post-CHOPS reservoir containing preferential flow channels due to the presence of wormholes. Both surfactant and ASP solutions only accessed the high permeability core, so oil was bypassed in the lower permeability sand even with the addition of chemicals to water. This result demonstrates that laboratory studies may be dramatically over- estimating the success of chemical flooding in heavy oil, and poses a challenge for successful implementation of chemical floods in heterogeneous post-CHOPS heavy oil fields.

Publisher

SPE

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3