Impact of Polymer Rheology on Gel Treatment Performance of Horizontal Wells with Severe Channeling

Author:

Leng Jianqiao1,Wei Mingzhen2,Bai Baojun2

Affiliation:

1. Missouri University of Science and Technology (Corresponding author)

2. Missouri University of Science and Technology

Abstract

Summary Gel treatment has been a cost-effective method to control the conformance of a reservoir with severe heterogeneity problems. The water channels in such reservoirs can be classified as open fractures or high permeability porous media with pore-throat network. Many simulation studies have been conducted to discuss gel treatment performance for conformance control. However, nobody considered the polymer rheology difference in open fractures and porous media in simulation. Previous simulation studies also ignored the residual resistance factor as a function of rock permeability rather than a constant parameter. In this study, a conceptual simulation model was established to simulate the linear flow system for the reservoir with horizontal wells considering the two factors mentioned above. The results demonstrate that the gel treatment always provides the better placement results in the open fracture type channel than pore-throat network type channel. Moreover, it is very necessary to consider residual resistance factor as a function of permeability, which is based on the experimental results and can provide much greater plugging efficiency in the higher permeable channels than constant residual resistance factor. Sensitivity analysis studies and multifactor analysis indicate that increasing oil viscosity and permeability ratio has a strong positive influence on conformance control results, which indicate in-situ gel treatment can be better applied in heavy or viscous oil reservoirs with fracture-like channels. Besides, the results also indicate that in reservoirs with severe channeling problem where channel velocity was high, the differences of gelant placement and profile improvement in models with two different types of channels could be enlarged greatly.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3