Numerical Simulation and Sensitivity Analysis of Gas-Oil Gravity Drainage Process of Enhanced Oil Recovery

Author:

Jadhawar P.S.1,Sarma H.K.2

Affiliation:

1. University of Adelaide

2. Petroleum Institute, Abu Dhabi, UAE

Abstract

Abstract The oil recovery process is controlled by the rates of gas injection and oil production, relative permeabilities, reservoir heterogeneities and the balance among viscous, capillary and gravity forces. Crestal gas injection in horizontal, vertical or reef type oil reservoirs recovers significant volumes of the residual oil due to the gas-oil gravity drainage mechanism, indicating the significance of gravity forces. This study investigates the effects of the parameters that control the process (e.g., rate of the gas injection and oil production) and reservoir heterogeneities on the overall performance of immiscible gravity drainage enhanced oil recovery (EOR). Reservoir simulation studies are conducted to map effective combinations of these parameters with respect to the oil recovery performance. Introduction Gravity forces play an important role at nearly every stage of the producing life of the reservoir, whether it is primary depletion, secondary water or gas injection schemes or tertiary enhanced or improved oil recovery methods(1). They can be advantageously used to maximize oil recovery from the oil bearing zone under investigation through gravity drainage mechanism. Several cases reported in the literature suggest that it could deliver as high as 87 to 95% incremental oil recoveries in contrast to other gas injection EOR methods. Gas-Oil Gravity Drainage Process Gravity drainage is a process in which gravity acts as a main driving force and where gas replaces voidage volume(2). It is commonly implemented in either of the dipping or pinnacle reef type reservoirs. CO2-assisted gravity drainage EOR process is a top-down process in which gas is injected in the gas cap through vertical wells at a rate lower than the critical rate (Figure 1). Critical rate is the rate at which injection gas fingers through oil zone (viscous instabilities) leading to its premature breakthrough at the production wells. Injected gas segregates and creates a gas-oil interface. Controlled oil production is started through horizontal wells placed at the bottom of the oil zone such that the voidage created by oil withdrawal (in addition to minor dissolved volumes) is replaced by the equivalent CO2 injection volume. When this happens, pressure differential across the gas cap and oil zone [that is gas-oil contact (GOC)] stay at or close to zero implying that the pressure in the gas zone behind the CO2 floodfront would be constant(3). This helps to maintain the reservoir pressure nearly constant.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3