Quantifying the Risk of CO2 Leakage Through Wellbores

Author:

Loizzo M..1,Akemu O.A.P.. A.P.1,Jammes L..1,Desroches J..1,Lombardi S..2,Annunziatellis A..2

Affiliation:

1. Schlumberger Carbon Services

2. Universitá di Roma

Abstract

SummaryLeakage through new or existing wellbores is considered a major risk for carbon dioxide (CO2) geological storage. Long-term effective containment of CO2 is required, and the presence of millions of suspended or abandoned wells exacerbates the potential risk in mature hydrocarbon provinces. Accurate estimates of risk profiles can support the acceptance of geological storage and the adoption of economically effective risk-prevention and -mitigation measures.Reliable data about long-term containment of CO2 are almost nonexistent, so wells that exhibit a similar risk profile (such as gas storage, gas production, and steam injection) should be used as a proxy to assess failure rates and consequences for cemented wellbores.Statistical data about occurrence of leaks and their consequences are analyzed to determine the risk profile of CO2 leaks. A smaller sample of data about leak rates is also analyzed to provide their statistical distribution. Rates and consequences are then compared to try to assess the order of magnitude of major and catastrophic leaks.Hydrothermal CO2 leaks in natural analogs are also reviewed to compare the distribution of leak rates and the consequences upon health, safety, and environment of CO2 releases to soil and atmosphere.Analysis of existing data will show that major leaks are likely to occur in less than two wells per 1,000, with the overwhelming majority of CO2 leaks being small and with limited or negligible consequences.Given their risk profile, CO2 wellbore leaks should be addressed through a routine risk-management approach. Their frequent occurrence requires effective prevention measures, such as understanding leaks and adapting and deploying practices to minimize their occurrence. On the other hand, their low impact ensures maximum effectiveness of mitigation measures, such as monitoring. Because leaks can be detected long before damage ensues, they can be observed to predict their long-term consequences and to plan the most effective intervention without unnecessary immediate operation shutdowns.In conclusion, the recommended course of action is to focus on risk prevention and early detection. This implies the evolution from a "no-leaks" attitude (even for negligible leak consequences) to one that seeks no damage and relies on tight surveillance.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Mechanical Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3