Open-Hole Logging While Tripping LWT Through Drill Pipes, as a New Technology for Risk Mitigation and Cost Optimization in Abu Dhabi Onshore Fields

Author:

ElWazeer Fathy1,A. Chaker Hicham1,Propper Maarten2

Affiliation:

1. Al Mansoori

2. Cordax

Abstract

Abstract The ability to measure formation petro physical properties thru drillpipe has always been a challenge. It requires unconventional approaches to remove the effects of metal and borehole fluids on both the transmitted and received logging signals. This paper will present a proven technology executed in more than 1,000 wells all over the world and a first two successful trail case study from ADNOC Onshore wells in the Middle East. The main objective is to acquire triple combo data (resistivity, density, neutron, gamma ray, spectral gamma ray & caliper) using the LWT conveyance and acquisition technology where there is a high risk of downhole triple combo Logging While Drilling (LWD) and or wireline (WL) tools getting stuck and the risk of losing radioactive sources. The new patent pending technique was executed by using a slim downhole measurement tools inside specially designed drill collars invisible to the measurement sensors. LWT collars can be used for drilling and reaming as with normal drill collars. Propagation resistivity and neutron measurements are mostly like conventional techniques in tools physics. Density and nuclear caliper are measured by modelling the responses of three detectors short, medium and long distance away from the cesium source. The measured LWT log data has been validated through back to back comparisons with WL & LWD) logs showing almost one to one correlation considering the effects of mud invasion due to lapsed time between runs, different wellbore condition and different depth of investigations. Measured caliper, resistivity, density, neutron from LWT showed respectable match with WL or LWD tool. The differences in log responses are explained by differences in tool physics, logging speeds and environmental conditions. Similarly, the computed porosity from LWT tool comparison with WL and LWT porosity has almost the same statistics. The Quality LWT data was acquired in both wells at virtually zero LIH risk and minimum extra drilling rig time. Introducing the new LWT technique to measure accurate Open Hole formation evaluation data from inside the drill-string is a cost-effective solution in various challenging scenarios, Exploratory/ Appraisal/ Development risky & challenging wells with unknown reservoir pressures or unsystematic depletion scenarios, complex downhole in-situ stress regimes, challenging tectonically faulted or fractured areas & unstable shales and many more, posing challenge to drill stable holes and a threat to LWD/ WL radioactive tool stuck.Unplanned deviated 8-1/2′ hole section geo-steered by MWD-GR, where at last minute triple combo is desired.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3