Considerations for Pore Volume Stress Effects in Over-pressured Shale Gas under Controlled Drawdown Well Management Strategy

Author:

Akande Jesse1,Spivey J. P.2

Affiliation:

1. P. E. Moseley & Associates, Inc

2. Phoenix Reservoir Software LLC

Abstract

Abstract The high decline rate observed in over pressured shale has attracted the attention of the industry, and better well management procedures for long term productivity improvement are still evolving. Operators are recognizing some benefit in controlled rate (controlled drawdown) production as one way of improving well performance for the wells in over pressured stress sensitive formations. During uncontrolled rate production because of high drawdown, the permeability in stress sensitive shales decays faster because of increased stress. Often high initial gas rate is accompanied by high decline rate as the permeability reduction takes effect. In addition, proppant could also be produced back, crushed or embedded in the formation. However, controlled rate production minimizes the rate decline, albeit at reduced initial gas rate. Modelers resort to using different stress permeability decay coefficients for these two production strategies. Higher values are assigned to uncontrolled rate production to produce lower EUR. This approach, although convenient, requires different permeability versus stress tables depending on the production strategy. Porosity and pore volume reduction in shales could be as high as 20 percent due to changes in net stress. The pore volume reduction provides in situ energy for gas recovery. The increased rate of permeability decay due to changing in situ stresses reduces the effectiveness of pressure support from pore volume reduction as fractures close under stress.. Controlled rate production strategy slows down permeability decay rate and this enables better use of pore volume energy. The pore volume consideration could provide additional gain to EUR for controlled rate. Our analytical simulation model couples geomechanics permeability and porosity stress coefficients and evaluates well performance under moderate and low net stress sensitivity. Haynesville and Marcellus shales were evaluated. The importance of pore volume stress effect from the stand point of well performance evaluation and reservoir characterization is assessed.

Publisher

SPE

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3