Assessment of the Equivalent Sandbed Roughness and the Interfacial Friction Factor in Hole Cleaning With Water in a Fully Eccentric Horizontal Annulus

Author:

Bizhani Majid1,Kuru Ergun1

Affiliation:

1. University of Alberta

Abstract

Summary In this study, we have investigated the turbulent flow of water over the sandbed deposited in a horizontal eccentric annulus. The primary objective was to determine the effect of the presence of a sandbed on the parameters strongly involved in the bed-erosion process, such as the local fluid-velocity profiles near the interface, the equivalent sandbed roughness, and the average and the interfacial friction factors. The particle-image-velocimetry (PIV) technique was used to measure the velocity distribution at the water/sandbed interface. The bedload transport of particles caused an abrupt increase in the equivalent sandbed roughness. Analyses of the velocity profiles in the wall units confirmed that the sandbed roughness is variable and can be several times greater than the mean particle size. The interfacial ( fi) and the average friction factors ( fa) were evaluated and compared with flow under the stationary-bed and the bedload-transport conditions. The interfacial friction factor increased dramatically at the onset of the bed erosion. We have also found that depending on the bed height (or the surface area of the bed at the interface), the interfacial friction factor can be significantly different from the average friction factor. The results presented here provide much-needed experimental data for the validation of the mechanistic, semimechanistic (empirical), and numerical [computational-fluid-dynamics (CFD)] models of the bed erosion process. The major conclusion of the study is that the difference between the average and interfacial friction factors should be taken into account for more-realistic multilayer modeling of the hole cleaning.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3