Shear Degradation of Partially Hydrolyzed Polyacrylamide Solutions

Author:

Maerker J.M.1

Affiliation:

1. Exxon Production Research Co.

Abstract

Abstract Partially hydrolyzed polyacrylamide solutions are highly shear degradable and may lose much of their effectiveness in reducing water mobility when sheared by flow through porous rock in the vicinity of an injection well. Degradation is investigated by forcing polymer solutions, prepared in brines of various salinities, through consolidated sandstone plugs differing in length and permeability, over a plugs differing in length and permeability, over a wide range of flow rates. A correlation for degradation based on a theoretical viscoelastic fluid model is developed that extends predictive capability to situations not easily reproduced in the laboratory. Mobility-reduction losses in field cores at reservoir flow rates are measured following degradation and are found to depend strongly on formation permeability. Consideration of field applications shows that injection into typical wellbore geometries can lead to more than an 80-percent loss of the mobility reduction provided by undegraded solutions. Also discussed are consequences for incremental oil recovery and the possibility of injecting through propped fractures. possibility of injecting through propped fractures Introduction Susceptibility of commercially available, partially hydrolyzed polyacrylamides to mechanical, or shear, degradation represents a serious problem regarding their applicability as mobility-control fluids for secondary and tertiary oil recovery applications. The approach taken in this work assumes that surface handling equipment in the field (pumps, flow controllers, etc.) have been adequately designed to minimize effects of shear degradation in all operations preceding actual delivery of the polymer solution to the sand face. The remaining problem is to assess the mechanical degradation a polymer solution experiences when it enters the porous matrix at the high fluxes prevailing around injection wells. Ability to predict the degree of mobility-control loss based on a laboratory investigation of the relevant parameters is desirable. White et al. were the first to attempt prediction of matrix-induced degradation, but the result was only a recommended injection-rate limit for minimizing polymer degradation for two specific wellbore completions. More recent papers offer limited data supporting the contention that matrix-induced degradation of polyacrylamide solutions results in significant loss polyacrylamide solutions results in significant loss of mobility control . This paper investigates the cause of mechanical degradation in dilute polymer solutions and presents experimental data on the effects of polymer concentration, water salinity, permeability, flow rate, and flow distance. permeability, flow rate, and flow distance. Several interesting and unexpected conclusions are drawn from the results. BACKGROUND - THEORETICAL CONCEPT The mechanical degradation of polymer solutions occurs when fluid stresses developed during deformation, or flow, become large enough to break the polymer molecular chains. Historically, the feeling has been that shearing stresses in laminar shear flow or turbulent pipe flow were responsible for chain scission. However, recent data reported by Culter et al. suggest that degradation of viscoelastic polymer solutions in capillary tubes may be dominated by large elongational or normal caresses occurring at the entrance to the squared-off capillaries. Such stresses result from Lagrangian unsteady flow, or elongational deformation, at the tube entrance. Flow through porous media also generates velocity fields that are sufficiently unsteady, in the Lagrangian sense, to lead one to anticipate large viscoelastic normal stresses. Viscoelastic fluids are materials that behave like viscous liquids at low rates of deformation and partially like elastic solids at high rates of partially like elastic solids at high rates of deformation. Several constitutive models are available for describing the stress-strain behavior of such fluids. SPEJ P. 311

Publisher

Society of Petroleum Engineers (SPE)

Subject

General Engineering

Cited by 101 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3