An Experimental Study of Wetting Behavior and Surfactant EOR in Carbonates With Model Compounds

Author:

Wu Yongfu1,Shuler Patrick J.2,Blanco Mario2,Tang Yongchun2,Goddard William A.2

Affiliation:

1. Dow Chemical Co.

2. California Inst. of Technology

Abstract

Summary This study focuses on the mechanisms responsible for enhanced oil recovery (EOR) from fractured carbonate reservoirs by surfactant solutions, and methods to screen for effective chemical formulations quickly. One key to this EOR process is the surfactant solution reversing the wettability of the carbonate surfaces from less water-wet to more water-wet conditions. This effect allows the aqueous phase to imbibe into the matrix spontaneously and expel oil bypassed by a waterflood. This study used different naphthenic acids (NA) dissolved in decane as a model oil to render calcite surfaces less water-wet. Because pure compounds are used, trends in wetting behavior can be related to NA molecular structure as measured by solid adsorption; contact angle; and a novel, simple flotation test with calcite powder. Experiments with different surfactants and NA-treated calcite powder provide information about mechanisms responsible for sought-after reversal to a more water-wet state. Results indicate this flotation test is a useful rapid screening tool to identify better EOR surfactants for carbonates. The study considers the application of surfactants for EOR from carbonate reservoirs. This technology provides a new opportunity for EOR, especially for fractured carbonate, where waterflood response typically is poor and the matrix is a high oil-saturation target. Introduction Typically only approximately a third of the original oil in place (OOIP) is recovered by primary and secondary recovery processes, leaving two-thirds trapped in reservoirs as residual oil. Approximately half of world's discovered oil reserves are in carbonate reservoirs and many of these reservoirs are naturally fractured (Roehl and Choquette 1985). According to a recent review of 100 fractured reservoirs (Allan and Sun 2003), carbonate fractured reservoirs with high matrix porosity and low matrix permeability especially could use EOR processes. The oil recovery from these reservoirs is typically very low by conventional waterflooding, due in part to fractured carbonate reservoirs (about 80%) being originally less water-wet. Injected water will not penetrate easily into a less water-wetting porous matrix and so cannot displace that oil in place. Wettability of carbonate reservoirs has been widely recognized an important parameter in oil recovery by flooding technology (Tong et al. 2002; Morrow and Mason 2001; Zhou et al. 2000; Hirasaki and Zhang 2004). Because altering the wettability of a rock surface to preferentially more water-wet conditions is critical to oil recovery, alteration of reservoir wettability by surfactants has been intensively studied, and many research papers have been published (Spinler and Baldwin 2000). Vijapurapu and Rao (2004) studied the capability of certain ethoxy alcohol surfactants to alter wettability of the Yates reservoir rock to water-wet conditions. Seethepali et al. (2004) reported that several anionic surfactants in the presence of Na2CO3 can change a calcite surface wetted by a West Texas crude oil to intermediate/water-wet conditions as well as, or even better than, an efficient cationic surfactant. Zhang et al. (2004) investigated also the effect of electrolyte concentration, surfactant concentration, and water/oil ratio on wettability alteration. They reported that wettability of calcite surface can be altered to approximately intermediate water-wet to preferentially water-wet conditions with alkaline/anionic surfactant systems. Adsorption of anionic surfactants on a dolomite surface can be significantly reduced in the presence of sodium carbonate.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3