Optimizing Completion Design through Fracture Evaluation in Oil-Based Mud using High-Resolution LWD Ultrasonic Images

Author:

Al-Azmi Mejbel Saad1,Al-Otaibi Fahad Barrak1,Joshi Girija Kumar1,Ameer Hussain Sulaiman1,Ashknani Esmael Mohammed1,Tiwary Devendra Nath1,Saleh Khaled1,Al-Khudari Abdulaziz Bader1,Abdulkarim Anar2,Lee Jonathan2,Farhi Nadir2

Affiliation:

1. Kuwait Oil Company

2. Halliburton

Abstract

Abstract Identification and interpretation of fractures, bed boundaries, and borehole breakout from high-resolution images plays a crucial role in optimizing completion design. In low-angle wells drilled with oil-based mud (OBM), images may be acquired using wireline. However, using wireline has been a challenge when inclinations exceed 45°, making logging-while-drilling (LWD) acquisition preferable. This paper presents the first use of a 4¾-in. ultrasonic LWD service to provide high-resolution images to assess fractures in the Marrat formation in North Kuwait. This paper presents LWD log data and high-resolution acoustic amplitude images used to evaluate carbonates within the Middle and Lower Marrat formations and describes their input into the design of the completion program. The 4¾-in. ultrasonic imaging tool was placed within a complex bottomhole assembly (BHA) composed of density and neutron porosity, acoustic, and nuclear magnetic resonance (NMR) sensors. The methodology used to create high-resolution images for both drilling and wipe run data sets using the logging speed and tool rotation is detailed, along with a description of how the image interpretation was used to optimize the completion design. The 6-in. borehole sections of the Middle and Lower Marrat formations are known to have prominent open fractures. During drilling, significant mud losses were encountered which required a reduction of mud weight to stabilize the well. From the memory data, 256-sector acoustic amplitude images were interpreted to provide an initial assessment of fractures and geological features. It was observed that an interval of log where mud losses were believed to have occurred corresponded with a large fracture and borehole breakout. In addition, multiple sections of borehole breakout at the top and bottom of the borehole were observed, with bed dip interpretation supporting the known field structure. Further post-well processing of the acoustic amplitude data was performed which created enhanced-resolution images. The processing method takes all of the raw impedance measurements–up to 2000 acquisitions per second–and re-sectors the data based upon the logging speed and tool rotation. The resulting images (540 sector for the drilled section and 360 sector for the wiped section) enabled identification of 255 features over the logged interval. The interpretation of fractures, their location, and dip and strike directions were used to optimize the completion design. The ability to acquire high-resolution LWD images in OBM applications within high-angle 6-in. hole sections to identify a wide range of features, including fractures, bed boundaries, and borehole breakout, represents a first in Kuwait. Removing the need to use wireline logging technologies in high-angle wells with wellbore stability concerns helps to reduce well time and logging risk. Deliverables from the 4¾-in. ultrasonic imaging service provide direct input into completion design, helping to optimize production.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3