Geomechanical Characterization of the Wufeng and Longmaxi Shales: Mechanical and Velocity Anisotropy, Static and Dynamic Moduli

Author:

Dong K.1,Ding J.2ORCID,Hou B.3,Wang X.1,Kou R.4

Affiliation:

1. China National Petroleum Corporation

2. Department of Geology & Geophysics, Texas A&M University (Corresponding author)

3. College of Petroleum Engineering, China University of Petroleum-Beijing

4. Harold Vance Department of Petroleum Engineering, Texas A&M University

Abstract

Summary The Wufeng and Longmaxi shales of Sichuan Basin, Southwest China have been the primary targets for shale gas development. Because hydraulic fracturing and seismic interpretation require detailed characterization of formation mechanical properties, a sufficient understanding of anisotropy and elastic behavior in Wufeng and Longmaxi shales is necessary. In this study, we conducted Brazilian and triaxial tests and ultrasonic velocity measurements to characterize tensile and compressive strengths and P- and S-wave velocities, respectively. Shale samples were cored at a range of orientations relative to bedding and tested at multiple confining pressures, which allowed a detailed study of mechanical and velocity anisotropy, static and dynamic moduli. Our experimental work shows that Wufeng and Longmaxi shales possess similar compressive strength and associated anisotropy with other shale formations but apparently weaker tensile strength anisotropy and velocity anisotropy. These two shales also exhibit much lower static moduli than dynamic values, which are interpreted to be caused by compliant pores such as microcracks and fractures. Comparison between Wufeng and Longmaxi shales reveals distinct levels of heterogeneity. Wufeng shale shows more pronounced heterogeneity regarding measured tensile and compressive strengths as well as elastic moduli. These general characteristics of Wufeng and Longmaxi shales provide valuable first-order understanding regarding anisotropy, heterogeneity, and elastic behavior. Utilizing this understanding could help improve hydraulic fracture design and seismic data interpretation.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3