Experimental Study of Confinement Effect on Hydrocarbon Phase Behavior in Nano-Scale Porous Media Using Differential Scanning Calorimetry

Author:

Luo Sheng1,Lutkenhaus Jodie L.1,Nasrabadi Hadi1

Affiliation:

1. Texas A&M University

Abstract

Abstract Phase behavior in shale remains a challenging problem in petroleum industry due to many complexities. One complexity arises from strong surface-fluid interactions in shale nano-scale pores. These interactions can lead to a heterogeneous distribution of molecules, which conventional bulk-phase thermodynamics fails to describe. Phase behavior in shale is altered from that characterized in PVT cells. The majority of current models are based on bulk-phase thermodynamics and efforts have been made using molecular simulation to gain insight into the nano-structure of confined fluids. However, to our best knowledge, the experimental data for hydrocarbon phase behavior in shale systems is severely absent. In this work, we investigated the phase change in nano-scale capillaries using experiments. The controlled pore glasses (CPGs) were applied to model the nano-porous structure of shale reservoirs. CPGs (pore diameters 4.3 and 38.1 nm) infiltrated with hydrocarbons (octane, decane, and the binary mixture) are subject to differential scanning calorimetric (DSC) analysis. It's observed that the bubble point is affected by pore size dramatically: at 38.1 nm the confinement effect is insignificant, but at 4.3 nm two distinct bubble points appear with deviations as great as ±15 K relative to the bulk, suggesting two populations of evaporating fluid. Based on experiments and simulations, a two-state model for the nanoconfined hydrocarbons is proposed. The bubble point is modeled using Peng-Robinson equation of state (PR-EOS) with the capillary pressure considered. The flash calculation is based on isofugacity and an interfacial tension model is accommodated. The modeling shows a general trend of increasing bubble point temperature with decreasing pore diameter, inconsistent with the experimental results. Besides, the “dual bubble points” behavior observed at 4.3 nm is not predicted by the model. This indicates the incapabilty of the bulk-phase thermodynamics in describing the behavior of nanoconfined fluids and the needs for molecule-scale simulation.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3